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ABSTRACT

This report outlines the work accomplished and results achieved in the
preparation of a computer procedure for the‘integration of ordinary differen-
tial equations. The following characteristics of the programs are specified:

a) The procedure for integration must achieve the accuracy specified by
the user.

b) The procedure must be problem independent and applicable.to the in-
tegration of any degree or number of coupled differential equations.

c) The step size, order and method of integration are to be chosen so
as to minimize computation time while meeting the accuracy requirements.

d) The procedure is to have built-in learning so that previous experience
can be used from one cail to the next to decide on the method and order to be
used. The procedure is to be self-modifying.

The following methods were used in the development of the procedure.

a) Adams-Bashforth-Moulton

b) Sﬁetter—Gragg-Butcher

¢) Cowell's method of constant Nth order difference

d) Runge-Kutta-Shanks.

Four different orders were used for each of the above methods.

Information is provided on an executive procedure developed to act in an
administrative and bookkeeping capacity for the basic integration routines
indicated above, plus a start and restart routine, which contains a separate
Runge-Kutta-Shanks routine. This executive procedure works very satisfactorily.

Three types of problems were used to exercise this procedure. These three
types are the Arenstorf orbits of the restricted three body problem, the system

of linear differential equations associated with Fourier transforms, and the
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system of linear equations obtained from the partial differential equation
for the vibrating string.

The results of running with a variety of problems and accuracies are
that no particular method seems very superior to any other. All methods’
prerformed well.

The results Jjustify the conclusion that the program developed would
be very useful as a general library program for integrating systems of
differential equations.

Several suggestions for further study are outlined in Chapter IV.
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I. INTRODUCTION

In previous work done under this contract, an effort was made to determine
which of the many methods and orders available for integrating ordinary differ-
ential equations was best. While it was possible to show that, under certain
circumstances, some methods and orders outperformed others, no one method
was clearly superior under all circumstances.

In the present contract, the goal was set of writing a computer program
for the integration of systems of ordinary differential equations (initial
value problems), characterized by the following specificationsf

a) The integration must meet a (user's) specified accuracy.

b) The procedure will be problem independent and applicable to the
integration of any degree or number of coupled differential equations.

c) The step size, ordér, and method of integration are to be chosen by
the procedure so as to be optimum; that is, to minimize the computation
time while meeting the accuracy requirements.

d) The procedure will have built-in learning so that it can use its
experience from one call to the next to decide on the method and order to
be used. The procedure will be'self-modifying.

The methods used are as follows:

(1) The Adams-Bashforth-Moulton method,

(2) The Stetter-Gragg-Butcher method,

(3) Cowell's method of constant Nth order differences,

(4) The Runge-Kutta-Shanks method.
With each of these methods, four different orders are used. A history file
is kept showing the past performance scores of each method and order and is

used to select which methods and orders are to be employed.



The program works in the following way. When a call is made in the
procedure to integrate from point a to the point b, this interval is divided
into eighths. The first eigﬁth of the interval is integrated by one method
for each of two different orders, and the times taken by each recorded. The
second eighth is integrated by another method, also for two different orders,
and the times recorded. The winners then compete against each other over the
next fourth of the interval. That is, the fastest order of the first method
and the faster order of the second method are both used to integrate the
second fourth of the interval, and the times taken by each recorded. The
faster method of these two is then presumably the best (fastest) of the four
tried, and it is used (alone) to integrate over the last half of the interval.
All of the times measured above are then logged in a cumulative history file
and the winners and losers noted.

This history file then is used as the basis for selecting which methods
and orders are chosen each time. ‘ .

The first of the two methods is chosen at random.(using a random number
generator) from among the four available. The second method is chosen to be
the method showing the best history of success among the three remaining
methods, with the cumulative history file being used to determine the degree
of success. Then within each method the same kind of selection process with
respect to orders is used. That is, the first order is chosen at random, and
the second order is chosen on the basis of which of the remaining three has
been the most successful (fastest running) order of that method. Thus it is
seen that the past performance of the different methods and orders influences
the choice of which are allowed to compete, such that the more successful

have a higher probability of being selected. ,




In using time as the sole estimate of performance efficiency, it is
assumed that all orders and methods have satisfactorily met the accuracy
requirements. The accuracy requirements of each method are met by controiling
step size and making error estimates at each step. The method‘of error
estimate is different for the different methods. In the Runge-Kutta single
step method, the error is estimated by taking two half steps and then a whole
step. In the Adams and Butcher methods the difference between predictor and
corrector is used. In the Cowell method a mid-range formula is used. (Only
in the Adams and the Runge-Kutta cases is there good theoretical justifica-
tion for using these methods to calculate the actual error -- the error estimates
in the Butcher and Cowell methods are essentially empirical.)

One ﬁurther feature introduced into the learning process 1s the gradual
"forgetting" of events in the more distant past.. This causes the events in
the distant past to have less influence than those more recent in determining
the score or performance figure of an order and method.

Three types of problems were uséd to exercise the integration procedure:

First, the Arenstorf type orbits of the restricted three body
problem (four equations).

Second, the system of linear differential equations associated with
the Fourier transforms (20 to 40O equations).

Third, the system of linear differential equations obtained from a
discretization of the partial differential equation for the vibrating string
(50 to 100 equations) .

The first of these is characterizad by the necessity of freguent step
size change. The other two have no need for step size change once the correct

step is found.



The preliminary results of running with a variety of problems and
accuracies is that no particular method seems to be exceptionally superior
to any other. It did appear that, for the accuracy range used, certain orders
of some methods were inappropriate. Also, for a given method one particular
order usually dominated, but which one dominated depended on the accuracy
being asked and to some extent the problem. In any event the program adapted
quite rapidly to the characteristics of a particular problem and accuracy.

A1l methods performed well and, for different problems, different methods
showed up more successfully. For example, the Rungé-Kutta method was most
successful when frequent step size changes were required, but the multistep
methods performed better wien long runs of uniform step size were appropriate.

The results justify the conclusion that the present program would be
suitable and effective as a general-library program for integrating systems

of differential equations.




II. INTEGRATION METHODS

A. The Method of Adams, Bashforth and Moulton

1. Description of the Method

The method investigated consists of the combination ofbtwo different
versions of the method of Adams into a predictor-corrector system (5 1]. The
use of this system to obtain numerical solutions to a set of simultaneous
differential equations with given initial conditions is independent both of
the number of equations in the set £o be solved and of the orders of the
individual equations in the set; provided, however, that each equation of
order m is expressed as a set of m coupled first order equations.

In general then, one deals with the system of equations
7 =& T = HxF) ), (1-1)
ax ? )’

where ;; §, and ? are vectors, each having a number of components, N, equal
k

tc>§: m. where k is the number of equations in the set to be solved, and the
i=1
m, are their individual orders.

This vector differential equation is equivalent to the integral
equation

- - ['X+h -/ - '
y(x+h) = y(x) + j fkt,y(t)/dt. (1-2)
%

At the point x = xq = Xq—l + h, this integral is approximated first by

F
4 Tg-lyg-l-pp (1-3a)
u=0

g-1
“(O) =2 §
v =y + h )
a a-1 °

and then repeatedly by




—»(\)+l) _ 3 - —)(\)) Y" * —
Vg = hp f(x ,7 (% )\ + Eéo Bq,q—u .
= hB: of"fl\’) +C, v=0,1,2, . . . (1-3b)

which converges %oward §q = §(xq) as v increases. Formula (1-3a) is called
the Adams-Bashforth predictor equation, and formula (1-3b) is the Adams-
Moulton corrector.

The coefficients qu and B:p are derived by the equivalent of inte-
grating Lagrangian polynomials fitted to f, but are independent of both F and h.

The polynomial for the predictor is of degree g-1 passing through the g points

§O’ ?l’ .s ?q-l’ while that for the corrector is of degree ¢ passing through
the ¢ + 1 points fo, fl’ e ey §q'

An explicit formula for the qu is

p:/pN p+1, (q\ 1 a=0,L,2, ...
= (-1 VI ..+
Bap = 1710 /% (\p Mo+l o/al, 0 = 0,1, . . ., q

/ ‘A
where the ip:%/ represent binomial coefficients and the Yp are found by the

recursion relation

1
,Yp.i_é-.yp_lq. +m-\{o=l’ p=o,l,2, R
*
and an explicit formula for the qu is
¥ yeo/enF oL fer N F L (A a=0,12, :
Pap ~ (-1) Lo /Yo \ o Mo+l T 0 T T N, p =051, > q
where Yo = 1 and Yp = Yp - Yp—l’ p = 1,2,3,



Bounds on the errors for the two approximations are the maximums

within the interval [xo,xq] of

Yqhq+l @t 3 (for Adams-Bashforth) (1-ka)
g+l
dx

and of

Y;+l W2 4a ¥ (for Adams-Moulton) . (1-bp)

dxq+2

and M, the order of the predictor-corrector system, is assumed to approximate

that of the corrector, which is g + 1.

2. The Computer Procedure

The procedure ADAMS itself is written to be included in programs
written in single precision for the Burroughs B-5500 computer. The language
is Algol 60 augmented by additional features available in the Algol compiler
for the B-5500. There are no unusual hardware requirements, because all input
and output to the procedure is ynder control of the including program through
the formal parameter list. All variables not in the formal parameter list are
local to the procedure, and ho files are used by the procedure.

2.1 Parameters and Variables

The following lists of formal parameters and local variables will be
useful in describing the operation of procedure ADAMS . In the remainder of

this discussion the interchange of upper and lower case letters, necessitated



by approximating the notation [ 5] within the limited character set available

to a computer, is straight-forward and will be done freely without further

comment .

Tdentifier

N

XTI

DX
EA
ER
ADAMSCOEFF

RKSEFNS

RKSORDER

RKSCOEFF

START

SHANKS

Type
Integer

Real

Real

Real Array

Procedure
Real

Integer

Real
Real Array

Real Array

. Real Array

Integer

Integer

Real Array

Integer
Procedure

Procedure

Formal Parameters

Usage or Meaning

The number of components in the vectors ;, EA, and ER.
Initial value of the independent variable.
Final value of "the independent variable.

Current dependent variable vector. Contains initial
values at entry and final values at exit.

Calculates the vector ?(x,?(x)). J
Power of Cl used in error control.

Number of back F points used in the approximating
polynomials. One less than M, the order of the method.

Upper bound on the initial step size.
Absolute error bound vector.

Relative error bound vector.

¥*

3
Contains the the and {1 - .

qu’ qu’ Yq+l/yq+lv
Function evaluations per step for procedures START
and SHANKS.

Order of R.K.3. method to be used by START and SHANKS.

Coefficients for START and SHANKS. See the descip-
tions of START and SHANKS elsewhere in this report
for details.

Gives the necessary points for starting and re-
starting. Name contains the factor by which Cl is
multiplied to coordinate step size between START
and ADAMS.

Used to complete fractional steps at the ends of
intervals.



The procedures START, SHANKS, and F, as well as the coefficient
wevays AUAMIOOETY snd REKSCCETFF, are not a part of the procedure ADAMS and

must be included sepurately in all programs using ADAMS (see 2.2 and 2.3).

Local Variablesg

Identvifier Tyre _ Usage or Meaning
X Real xq, current value of the independent variable.
INTERVAL Real XF -~ XI, the interval of integration.
Ccl Integer Two. to an integral power. Determines H.
H Real INTERVAL / Cl, the current step size.
2 Real Number of steps of size H remaining ffom X to XF.
GR Real (1 - yqﬂ/y:;l , used with CHANGE and ERROR.
CHANGE Real Controls the number of iterations of the corrector
: equation.
ERRCR : Reeal Controls the error and running time through the
step size.
TP Real Array Predicted ;é vector, F(p)’ the ?év) of (1-%3b).
FC Real Array Corrected ;é vector, f(c),'?év+l) in (1-3b).
FH Real Array £ history vector. Contains 2g-1 back points for

each of the N components of f.

TP Reul Aveay Predicted ?q vector, ;(p), the'ﬁgf) of (1-3a).

YC Real Array Corrected §q vector, §(C), the §év+l) of (1-3b).

Y3 Rea!l Array Back ; vector, §<b), needed for restarting after
halving.

A Real Arvay Alternate YB.

A1l iocal urrays sre dynamic with respect to N and Q and, to avoid

soving large numbersz of components, reversals in meaning are made on successive



steps or iterations between FP and FC, between YP and YC, and between YB

and YD. The FH vector array is indexed cyclically for the same reason.

For further details consult the flow diagram and the listing of procedure
ADAMS following this discussion.

2.2 The F Procedure

A procedure for calcﬁlating the vector §' = ?(x,§(x)> must be in-
cluded global to a call for procedure ADAMS for each set of differential
equations to be solved by a program using ADAMS. This procedure is called
by ADAMS as the formal parameter F and must itself have the(following formal

parameter list:

Tdentifier Type Usage or Meaning

N Integer Number of components in the vectors YV and FV.
X Real Current value of the independent variable.

Yv Real Array Current dependent variable vector (input).

Y Real Array F value vector (output).

N and X may be called by value. The arrays YV and FV are one-
dimensional starting at zero and must be called by name.

2.% Orders Available

The procedure ADAMS is written to be completely géneral with regard
to order, and any order may be used if the necessary coefficients are placed
in the ADAMSCOEFF array. For a given order M = g + 1, there are 2q + 2 =2M
coefficients which sbhould appear in the array beginning at position zero in

the following order:

¥ 3¢ Y

B Q‘l; o} Bq,q) Bq)q_—l, LI ')B ,O, !l_'Yq+l/Yq+1' *

B > B

a-1,9-2°

a-1,9-

10



2.4 gtarting an Integration

Since the Adams method is a multistep method it cannot start itself
but must rely on a starting procedure that will supply at least g-1 f points
which, together with a given initial f point and a current ; point, comprise
a history upon which it can build. The starting procedure used here is the
Runge-Kutta-Shanks procedure START, described elsewhere in £his report. The
number of function evaluations per step and the order of Runge-Kutta-Shanks
method used by START may be varied at will by the user through the form;l
parameters of ADAMS. This will achieve optimum compatibility with the order
of Adams methcd being used for each given set of differential equations being
solved.

Initial step size is determined by the formal parameter DX. The
initial trial start wil} be made with a step H = INTERVAL / Cl, where Cl is
set to the smallest integer power of two such that |H| = IDXI and
|HISIINTERVAL|/Q. This causes the prodecure ADAMS to take at least one step
after starting regardless of the magnitude of DX. If the procedure START
cannot meet the error requirements at the initial H, it doubles Cl repeatedly
until these requirements can be met.

2.5 Error Estimates and Step Size Control

To minimize running time without introducing errors intolerably
large, the error in each component of the final ? vector is controlled through
the use of the formal parameters EK and ﬁ%. éﬁ specifiies the maximum allowable
absolute magnitude of the error in each component of ?, and ER specifiies the
maximum allowable relative magnitude. These two error control vectors are
used in conjunction with the quantity GR = |l-yq/y:+l|, which is derived from

the bounds (1-4), and a parameter P, chosen from the interval [3,1] by

11



raem e buma et S s e e a i+

empirical determination of the randomness of the round-off error in a par=-

ticular set of differential equations. (P = % corresponds to totally random

error and P = 1 corresponds to totally additive error.) In practice Yq&l

has been used in GR instead of yq to be conservative, because the quantity
being controlled is only an estimate of the true error.

(c) _(p)

—_— -
The estimated error vector ERRCR is defined to be Iy - ¥y |,

-

vhere 3P is the §q(°) of (1-3a) and dCO R ;q(vfﬂ') in (1-3b), with v, being

the first v for which every component of
——> _2(v+1) _ 2(v) (-'(v+l) -'(v)) *
CHANGE = |T - f = - JolS]
E o 1 =1lyg vg )/ Byl

is less than the corresponding component of either

EA - GR or ER - GR 2(v+1)
£ EH3
c1f . 290 L c1f . 290 . g, 4
4,0 g,0

—
If any component of ERROR is larger than the corresponding components of both

FA - GR

cit

and

ER - @R , 2(c)
== 7
c1

then ; is replaced by §(b), the step size is halved, and g-1 new.} points and
a new current y are obtained from the procedure START. If it is not necessary
to halve the step size, then ;(c) becomes the new ;. If every component of
—

FRROR is smaller for three consecutive steps than the corresponding components

of both

12
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EA - GR ER - GR =(c)
e Y and —_—— -y 5
CrP '2Q'+5 ClP ‘QQ#S

then if there are ;t least 2g-1 back points in the ﬁﬁ array and there are
at least two more steps of the current size necessary to reach XF, the step
size is doubled before the next trial step. If it is not necessary either
to halve or to double the step size, X is increased by H and a new trial
step is made.

2.6 Finishing an Integration

The procedure ADAMS continues as described until XF is reached
unless repeated halvings and doublings of the step size bring the independent
variable to within a fraction of a single step of XF. When this occurs, the
fractional step is completed by the Runge-Kutta-Shanks procedure SHANKS,
described elsewhere in this report. The order of Runge-Kutta-Shanks method
and the number of function evaluations per step used here will be the same
‘for a given integration as those used by the procedure START.

3. TFlow Diagram and Program Listing

Figure 1 1is the flow diagram for the method of Adams, Bashforth
and Moulton. The program listing follows at the end of this section.

L, Results and Conclusions

For experimentai and diagnostic reasons, the procedure ADAMS was
originally checked out with separate arrays for the dependent variable
vectors YI (initial values), YB (back values), and YF (final values), all
Qf which are now made equivalent to ? in the DEFINE statement. These arrays
may be removed from the define statement and declared to be local arrays,
global arrays, or formal parameters if any reason for doing so should arise.

If this is done ? should be removed from the formal parameter list.

15
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Figure 1. Flow Diagram for the Adams Method.
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A user interested in an efficient production program and desiring to
eliminate the unnecessary moving of data resulting from the formerly separate
arrays, as well as other easily discovered minor inefficiencies, should find
the coordination of notation, identifiers, and labels between the preceding
discussion and the following flow diagram and program listing sufficient to
guide him in the task. Further, the coordination of the notation of this
report with that of [ 5 ] should enable him to investigate the theory of
the method of Adams with a minimum of effort expended on trivial translation.

The procedure ADAMS makes efficient use of B-5500 Algol under the re-
striction of generality with respect to order. However, in situations
where only a few orders are needed, the running time can be decreased
considerably by duplicating certain sections of the program for each order,
using separate identifiers to. replace much of the indexing and a switch to
select the proper section of programming for a given order. Little investi-
gation of the amount of saving achieved in this way has been done, and an
evaluation of the potential gain should be profitable. This investigation
might also include determination of the tradeoff between storage space and
running time when a large number of orders is required.

Although the procedure ADAMS has now been tested on a wide range of
equations, orders, and required accuracies with the existing step size
controls, little has been done to determine the increases in efficiency to
be obtained by varying the method of control and how the effects of such
variation may depend upon order and required accuracy. The indication is
that the existing controls produce considerably more accuracy than intended.
This is particularly true when high accuracy is required at higher orders,

where the penalty in running time is greatest and the largest variation in

16




~step size has been observed. Repeated step size expansions and contractions
of as much as 1024 to 1 have occurred. Even a slight relaxation of the
requirements for expanding step size shouldlproduce dramatic decreases in
running time. Determination of a way to do this safely should prove highly
worthwhile. There is slight evidence that, while the error increases with
increases in the factor GR at lower orders as might be expected intuitively,
this effect apparently can reverse at higher orders. A study of this
phenomenon could conceivably provide information useful in improving the

efficiency of the step size controls.
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B. The Methed of Stetter, Gragg, and Butcher

1. Description of the Method

Following is a discussion of a method for the numerical integrétion
of ordinary differential equations described by J. C. Butcher L 12] in a paper
titled "A Modified Multistep Method for the Numerical Integration of Ordinary
Differential Equations” which appeared in the January, 1965 issue of the
Journal of the Association for Computing Machinery. In this paper, Butcher
presents a modification to the multistep process such that for k g T(where k
= the number of steps) processes of order 2k + 1 are available.

A large number of possible multistep methods exist for the numerical

integration of the differential equation

%% = £(x,5) 5 y(x)) =y . . (1-1)

3uch methods are usually characterized by an integer k and a set of

constants @y, o, === %, BO; Bl’ — Bk. A solution is first found for the
variable y at a set of points X5 x2,’——-, Xk-l’ (where X, = Xo + ih) and
thereafter by the formula:

Vo = %Vno P %Vt T Yk

+ h(Bofn S IE SR AL kan—k) (1-2)
for n =k, k + 1, --- where y, = y(xi) and f. = f(xi,yi). Dahlquist [3]

has shown that if the parameters o and B are chosen under a condition of
stability, the order of a method canﬂot exceed k + 1 (if k is odd) or k + 2
(if k is even).

A modification to this process is presented by Butcher which consists

of the addition to the right-hand side of equation (1-2) of an extra term
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h B fn_e where B and 6 are additional parameters to be chosen. The modified

formula has the form:

Vp S0V g v ¥y ot o7 ¥y

+h (8 fn_e + Bofn + Blfn_l + e kan_k) (1-3)

A procedure for choosing the coefficients is presented by Butcher. The
simplest stable processes are for k = 1,2,3 with 0 = 1/2 and for k = h,5,
6 with ® = 1/3. A stable process 'also exists for k = T with o = 13/h0.

The method for implementing the formulas is to estimate yn_e,and Yy
using appropriate predictor formulas, then use these predicted values to
evaluate the right-hand side of equation (1-3). The forms of the predictor

formulas used are:

Vpup = AV ¥ AV o F T ATy

+h (B B.f + === + B f _ (1-4)

1501 F B i)

= a'lyn-l + aEyh-E Fommm akyh-k

+h(bf o +bf 4 +0

g T Ty g F DT o+ o DT ) (1-5)

To use this process, y _g 18 first estimated using equation (1-4). The value
of the function is then determined for V82 and these two results are used
in equation (1-5) to determine a value for Y, The value of the function

is then determined for Yy, and a final value is then estimated using equation

(1-3).
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2. The Computer Procedure

A single-precision ALGOL Procedure was written to implement the
integration procedure described above on the Burroughs B-5500 Computer. The
procedure was designed to be used with the driver program described else-
where in this report, but it is conceivable that it could be used with other
appropriate driver programs. The procedure was written to integrate a system
of differential equations each of which has the forms:

%XY- = £(x,5), v(x,)) = y,-

Since the integration procedure described by Butcher is a multistep
Process, it must at all times have a history of back points. The process
is, therefore, not self starting; it must rely on some other process to
develop the first k steps. The starting procedure used in this implementa-
tion is a basic Runge-Kutta procedure as modified by E. B. Shanks and is
discussed in paragraph E of this chapter. The starting procedure is called
at the beginning of an integration and whenever it ig necessary to reduce
the step-size.

The step-size control is based on the difference between a predictor
and & corrector; the control allows for halving and doubling of the step-
size only. Equation (1-5) is used as the predictor (yhp) and equation (1-3)
is considered to be the corrector (yhc)‘ An estimate of the magnitude of
the error in a step is given by the absolute value of the difference in

these two quantities. This is used in conjunction with a relative error term
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ER and an absolute error term EA in the following manner: if

- - g - EX
|y - \ > (BA) ( DX
np ne AW )

and

/ px K
\&-xT/

ynp - y-1’1(}

> | @)

then the step is rejected and the starting procedure is entered with the

previous point and a step-size equal to half the old step-size. If

— - — DX - EX / 1 N,
ynp " Yne < (EA) ( Xr - XI ) K 22k + b )
or
) . EX
- - 2N DX - 1
ynp - ync < (ER) \ XF - XI ) (ync) 22k F L

for three steps (without an intervening halving of* the step-size) and if
there is sufficient history of back points, then.the step is accepted and
the step-size is doubled. If neither the conditions for halving nor the
conditions for doubling are met, then the step is accepted and the step-
size remains constant. It is important to note that the above criteria
must be satisfied for all corresponding components of the vector quantities
before the conditions are considered to be met.

The method of ending the integration procedure is to run until the
value of the independent variable plus the next step is either equal to or

greater than the given final value 1i.e.

X + DX =z XF.
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If it is exactly equal, then the procedure takes one more step and guits.

If X + DX > XF, then a special ending procedure is called to take the

final step. This ending procedure is also a basic Runge-Kutta procedure

as modified by E. B. Shanks. It is discussed in paragraph D of this chapter.

The procedure call for the Butcher procedure must be as follows:

BUICHER (N, XI, XF, K, EA, ER, DX, CON, FUNCTION, EX, RKC, START, SHANKS, YIV,

™=
'

con -

RKSNF, RKSCIR);

the nunber of dependent variables

the initial value of the independent variable

the final value of the independent variable

the number of steps to be used in the Butcher method

the acceptable absolute error vector contained in an array of
dimension N

the acceptable relative error vector contained in an array of
dimension N

the suggested initial step-size

the array row containing the Butéher constants required for the order

of the method specified

FUNCTION - the name of the user's function evaluation procedure

BEX -

RKC -

SHANKS -

START-

YIv -

RKSNF-

RKSODR

the error exponent

the array containing the Runge-Kutta constants

the name of the ending procedure

the name of the starting procedure

the initial values of the dependent variable; upon exiting the Butcher
procedure, this array will contain the final values of the dependent
variables

the number of function evaluations in the Runge-Kutta Shanks procedure

- the order of the Runge-Kutta Shanks procedure
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3. TFlow Diagram and Program Listing

Figure 2 is the flow diagram for the method of Stetter, Gragg,

and Butcher. A listing of the program is given at the end of this section.

L4, Results and Conclusions

The following remarks will be directed to the problem of step-
size control in the Butcher procedure. Although the method of step-size
control, as described previously, was adequate for the purposes of this
project, it is felt that some improvement is desirable. The difficulty
observed was that in virtually all cases the accuracy achieved by the
procedure was one to two orders of magnitude greater than the accu?acy
asked. TFor the third order Butcher process (k = 1), the step-size control
method is completely unsatisfactory yielding long running times and accu-
racies as much as four times greater than those asked. The process in this
case is essentially a third-order Runge-Kutta process. The equation used
as a predictor in the step-size control scheme simply is not accurate enough
in this case; this results in relatively large différences between the
predictor and the cofrector.

In order to improve the relation between the accuracy asked of the
procedure and the accuracy achieved, it is desirable to study ways of

improving the step-size control of the Butcher procedure. Such an improve-

ment should also result in a faster running time for the method. One
possible way of improving the step-size control is to use some form of
two—step/one—step comparison. This could be accomplished in the Butcher
process by using a predictor and corrector of the same order where the
corrector uses alternate points of the history and a step-size twice as
large as that of the predictor. The use of twice the step-size has the

advantage of not requiring the recomputation of back points.
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The investigation of new methods of step-size control should be done
in double precision so that all of the orders of the Butcher process can
be investigated. If single precision were used, only lowest orders of tﬁe
process could be adequately investigated. This would not give a complete

'

picture of the operation of the Butcher process.
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CALL
YES | endinG
PROCEDURE

CALL
FUNCTION
€2« €2 -1 > procepure
FOR Y(n,n-8}
CALL
ENDING
* PROCEDURE
.
REARRANGE
ToTeHT <0 —» v anp £
HISTORY

Figure 2 (Continued).

1s

COUNT = n
?

[{]

YES
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ARE THERE
SUFFICIENT
BACK POINTS TO
DOUBLE THE STEP

STEP SIZE?
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DX « DX + DX
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Y and F
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Flow Diagram for the Stetter-Gragg-Butcher Method.




32

0006€£000 fIXmdX3aANLINI
0008€000 f TN THN
0004€£000 {2+ (NX9)22IN
0009€000 £T+CHX9)2T9H
0006€000 HIX9I9N
000h€000 (E/2%1W0 3ST3G°0+1NW0 NIHLIE=Y HNZ=X HOT=) 4l
000€€000 SCIIANIA9(I€01A 0Q N TILNNT 431ST>1 ¥Od
0002€000 fINSOI3vedy AVHYY TVIY
0001€000 (XAXe1xax vay
0000€000 (9P CEL 2P eENY HADIAUNI
00062000 (ALNI v3Y
00082000 CONCIONIINCLWNG TVIY
00022000 £TWY ¥393UNI
00092000 fHILINNOD ¥IDILINI
00062000 0AD ¥3IYIALINI
000%#2000 fIMNXE201000 AVHY¥Y V3N
000€£2000 £1454nQ 34v7
00022000 fTWE2TIADCTTADCLNILQL“INNDD Y¥39IINI
00012000 £21¢11¢¢d Tv3y
00002000 (HSINIA¢LY¥VISIYeLHYLS 138V
00067000 (INSOITAJCIANNS CdANNS *dIANNS AvVY¥Y TV3Y
00081000 (€140 H3IDIAUINI
00041000 FWeTICXIANI€AD4N T ¥IDIUNI
00091000 £292°¢ ev«zv‘xv‘saw31‘Adw31 1S31++5004vD00°41004V100¢800¢V0I“IXa TV
00061000 ¢2xd 1v3y
00041000 (XeT19S vy
000€3000 (INSOC9T201d¢A AVHYY VIY
00021000 NID38
00071000

00001000 fLOIYICVICNDD AVHYY V3N
00060000 £L010MY AVMYY V3Y
00080000 (X3XAAXIX 1V3IY
00020000 (1HVLS 3¥NA30048d ¥IDILNI
00090000 fSHNVHSNOILONNS 3¥NAIO0Ud
00050000 EMON ¥IDIALNI
00090000 (HA0SHYCANSHY ¥IDIUNI
000€0000 §LOIALA AVYYY TV3H
00020000 (HOOSHUC ANSHYOXICNDIOXANCAXCIXN INTVA
00010000 fCHAOSHHCINSHUCATA

00000000 ¢SHUNVHSCL¥VISIINYeXASNOILINNIONDI EXACUTVIGYIXCIXNIYIHILNG 2n03I0Yd



¢
3
i
g
i
i
i

00064000
00082000
00042000
00094000
00052000
000172000
000€2000
00024000
00012000
00002000
00069000
000689000
00049000
00099000
00059000
00079000
000€9000
00029000
00019000
00009000
00065000
00085000
00045000
00095000
00055000
000%5000
000€£5000
00025000
00015000

(9T QOWCTAQ+Mr=TWYIIETAD
NID3S
00 TWXY TIANNT d31S09P0 HO4

£OSLTIIDANNSHLITAANNSHITI4IANNS 00 N TIANNT 431ST+I ¥04

(XA X+ XAX
FCLROXXO)+X2LXAXELUYLS
{XAxXL29MINQIIEY
(XAxLT9MINQI*EY
EXAX[9NINDI2IY

fGN3

$130S/013143»(133
£10S/(01)V3>L113V
. NID38
00 N TILNNT 43LSTHI ¥HO4
£X3%10+4108
fON3

EXAxLS+SMrINQI» (24010090
EXAXLE+ST INQILT4r]000
EXAXL1+20INOO(MI00D
frxga+er

N1D3d

00 €WX TTILNNE d431S0»r ¥O04

fTHAXEYEWN

fTO/AUINI*XAt L YsSaNnd

f0A0*»71AD

fTWN= %2092

§CCONY INSHYS

0000G000X392 9T “OAISATACSCACALACK I THYSNOILONNICHIYICTICIXCIXNILYYLISHIIXTINTD

00064000
00087000
00025000
00094000
00054000
00075000
000€4#000
00024000
00015000
00007000

STWYAYIINNCDI s LYY L'SIY

(L9001 490%“0JA“IXININOILINNS

£091NJ10L

{0040

* {0+7TAJ
§C{n+(Hx2IInc)/142d
{19923

(10410470 00C(XQISAVSCID/CALNIISEYIINOCT+N>TI)IITIHM

£1210
fIX9X

53



(4

J3¢3xJ3

J66%J3

COA€CON[J613

COB¢COO[J3)}

COLACCON[J6+213

COLB¢COO[J3+113

COGA«CONLJ6+413

COGB«COOTJ3+213

FOR T«1STEP {UNTIL N pO

BEGIN

 TEMPYeY[CYL3,113
TEMPFeFLCYL3,113
SUMYIPLI1e¢SUMYIPLTI+C(COAXTEMPY)+(COBXTEMPF) )
SUMYP[1)€SUMYPLT1+(COLAXTEMPY)+(COLBXTEMPF)}
SUMYCEIJ€SUMYCTI14CCOGAXTEMPY)+(COGBXTEMPF) )

END3

END3

FUNCTIONCN,XDXTs SUMYIP,FV1)3

FOR 1¢1STEP 1UNTIL N DO

BEGIN
TEMPFeFVIL[I)}
SUMYP[I1e¢SUMYPLII+CAIXTEMPF)}
SUMYCLI)eSUMYCLTI+(A2XTEMPF)3

ENDJ

FUNCTION(N,XDX» SUMYP»FV1)}

CYLeCCYL+1IMOD 163

CYOe(CYL+KM1IMOD 163

COUNTe0}

FOR 1€1STEP 1UNTIL N DO

BEGIN
TEMPY&SUMYC[IJ+(A3XFVITI))}
T1€AELT1]S
T2¢ABS(RELIIXTEMPY)
TESTEABS(TEMPY=SUMYP[11)}
IF TEST>TL AND TEST>T2 THEN
BEGIN

C2¢C2+C2}

00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000



00065100

00026100
00095100
00055100
0005100
000€4100
00025100
00015100
00005100
00067100
00084100
00044100
00097100
000S1100
000y#100
000£%100
000¢%100
00014100
0000#100
0006£100
0008€100
0002€100
0009€100
000s€100
000%€100
000€€100
0002€100
0001€100
0000€£100
00062100
00082100
00042100
00092100
00052100
00072100
000€2100
00022100
00012100
00002100

fHSINIZ oL 09
OOOQSIOO{(XG‘83‘V3‘XH‘OX&‘HOOSNH‘JNSMH NOTLINNIAS[#oQAIACIXSXIN)SHNYHS

NI9D3d

N3IHLT>2J 4l

£2/13+1)
{¢/¢32280

£02¥3INNOD

NID3d
N3HL MxZQ¥3INNDI 41
NID3d

NIHLESINDLOL 41
f14INDLOLANDLOL

NID38

NIHL N=ILINNQOJY 41

fCL2o0Ad 0% 0ADTACXSNINOILINNS

(THLINNQI*LINNDD N3HL 2lxed>1S83lL

fON3

) §HSINIY 01 09
£OXASUACYIIXTDNYYAOSHY P ANSHYENCILONNI LHDADIACAXCXEN)ISHNYHS

NID3d

N3HLE>»2) 41
(HSINIS 04 09 N3HL10=2D 4l

£(2IxXd

Jm XX

flwgd?2d

£14v1is3y 0L 09

fON3

O Tixed>1S31 4l
fAAWIL2TI0A21A

fGN3

‘

§10410+10
fON3

fHSINI4 01 09
£OXAHIYIXIIINY T HUOSHUC ANSHYNOTLONNSCL» 0ADTACIXEXINISHNVYHS

N1938

N3HL TWX>2J 41

91 GOWCTWA+TAD)S0AD
91 GOWCST+TAIIHTAD

35



00010100
00008100
00062100
00082100
00022100
00092100
00052100
00072100
000€.100
00024100
00012100
00002100
00069100
00089100
00029100
00099100
00059100
00099100
000€9100
00029100
00019100
00009100

N}
f43HIINE ON3 ™
fCI90A0TA2CTIATA 0Q N TILNN T d3LST»I HOJASHSINIAG
’ (1Y41S 0L 09
f1+Y3LINNOIHYUIINNDGD
(UN3

§ON3
{AN3

£1L4S8n0 ol 09
faON3

fLI¢CTA01d2 (1194014
§LICCTAADIAS(TI¢TNADIA
91 QOWC(r®E)=9T+0AD)4+CTAD
91 (GOWC(ra9T+0A0)2174D
NIYV38
00 TWY TIINNT d3LST2M 404 00 N TIANNT d431ST+1 H04
€0+1INJ101
{ON3



C. The Cowell Method

1. Description'of the Method

Cowell's method as described herein is a multistep predictor-corrector
method for the numerical solution of the first-order vector differential

equation

- 7 a - - =y - —

y (%) =3 v(x) = £ (55(x)), ¥ (%)) = ¥, (1-1)
A complete derivation and description of Cowell's method can be found

in[ 9 ] and [ 18 J1; only the essential formulas are included here.

The following notation is adopted. ILet g be an even positive integer,

m = q/2, h be the step size (assumed to be constant over some set of calculations),

X =Xy +mnh y =Y (xn), and f = f(x, v.) .

The predictor formula is

1 d o
Yo=b [87f 1+ {l Pyt gy (1-2)
j=0
The corrector formula is
_% q
7 o=nlste 2+ 2 oc F ] (1-3)
n n-3 oy J n-=37’
J=0
and the mid-range formula is
7 = -1 Y oM. F ] (1-4)
I T b [6 fn—% * T Tmm-gt o -
J=0
—_—

The predictor formula gives ;ﬁ in terms of 6'lfn 1 and the function values
=

37



at the previous g+l points; the corrector formula gives a new value of ;g in
terms of § fn 1, the 0ld value of ;ﬁ, and the function values at the previous
-2 —
g points; the mid-range formula gives a value of 5; in terms of 6-lfn 1 and
-2

the function values at the g+l consecutive points centered around X -

The equation

n-+ n-1-% © Tl (1-5)

completes the set of formulas necessary for the numerical solution of (1-1).

If it is assumed that
oy q -—
ifi}i=0 and Vo

have been obtained by some starting procedure, the mid-range formula (1-4)

can be applied with n=m tc obtain

>
-1
RS

Equation (1-5) can then be applied m times to obtain

-f
5§ °f 4
a-z
For each positive integer i -
—_
-1
d fq+i-§
can be computed from
5~ Le
g+i-1-%
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and fq+i-l using (1-5); Vgey COB be computed using the predictor (1-2);

§q+i can be computed from the predicted value; ;q+i can be computed using .the

corrector (1-3); T

i can be computed from the corrected value; if necessary,

iteration can be resorted to, using (1-3), until the last two computed values

-

of yq+i agree to sufficient accuracy. For any j =2 m a value of yq+j—m can be
obtained from the mid-range formula (1-4) and compared with the value obtained

from the predictor-corrector step. If the two values of §é+j-m are in sufficient

agreement, the values up through yq+j are considered acceptable; if not, yq+j-m

is considered the last acceptable value and all values beyond are rejected.
Hence, the knowledge of (1-2), (1-3), (1-4), and (1-5) is sufficient to

apply Cowell's method in the numerical solution of (1-1). The coefficients

I'e r

'P.} < C.} 4 and {M.} 9 are given in [ 18 ] for

st j=07 ia j=0’ JJ =0 &

a=%, 6, 8, 10, 12, 14, and 16.

2. The Computer Program

The Cowell computer program is a Burroughs B-5500 ALGOL single-
Precision procedure whose declaration is as follows:
procedure Cowell (m, xi, xf,y, £, ea, er, p, dx, rksfn,
rksorder, rkscoeff, g, cowellcoeff, start, shanks);

value n, xi, xf, p, dx, rksfn, rksorder, q;
integer n, rksfn, rksorder, gq;
real xi, xf, p, dx;
real array y, ea, er, rkscoeff, cowellcoeff [0];
procedure T, shanksg
integer procedure start;

The parameters of the procedure are defined as follows:
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n - the number of dependent variables in the vectors ; and F

xi - X the starting Qalue of the independent variable x

Xf - the final value of the independent variable x

Yy - the array in which 5; = ; (§i) is located upon entry and in which
y (xf) is located upon exit

f - the procedure which computes T = T (x, ¥)

ea - the array containing the absolute error vector

er - the array containing the relative error vector
p - the exponent used in step size control
rksfn - the number of function evaluations used in the Runge-Kutta-Shanks
starting and closing procedures
rksorder - the order of the Runge-Kutta-Shanks closing procedure
rkscoeff - the array containing the Runge-Kutta-Shanks coefficients
for the starting and closing procedures.
g - the even integer used in describing Cowell's ﬁethod
cowellcoeff - the array containing the Cowell coefficients

start - the starting procedure

shanks - the closing procedure.

The procedure performs the numerical integration of (1-1) from x = xi
to x = xf. The step size h used is always the length of the interval xf - xi
divided by a power of 2 in order to avoid error building in the independent
variable two counters, ¢l and c2 are kept. cl is always a positive, integral
power of 2, and h = (EE - 51)/3;. c2 is the number of steps necessary to step

from the present x to xf using the current step size h. Initially c2 = cl;

as each step is taken c2 is decremented by one and the present’ value of x is

Lo



computed by x = xf - h c2. If h is halved, cl and c2 are doubled; if h is
doubled, cl and c2 are halved. Hence c2 need not be integral.

The error vectors é; and é}, like 5; have n components. (Although the
base of the arrays y, ea, and er is zero, the n components are placed in
positions 1, 2, ..., n of the arrays.) The procedure's error control
attempts to guarantee that, in integrating from xi to xf, each component
of §‘will not be in absclute error more than the corresponding component of
ga and will not be in relative error more than the corresponding component of
é}. At each step, the procedure requires that for each i, l<i<n, either the
absolute error in y [i] does not exceed ea E]/(clp) or the relative error in
y [i] does not exceed er [i]/(c1®).

Ifp =-l and é} = 0 then the accumulated error in any component of ;
camot exceed the corresponding component of é;. If the error is assumed to
accumulate randomly as the square root of the number of steps, p = % and
é} = 0 will cause the accumulated errof in any component of ; to be
approximately the corresponding component of 55.

If p=1and é; = O then the accumulated error in any component of ;
cannot exceed the corresponding component of é} times the largest value
assumed by that component of ; during the integration. If the error is

assumed to accumulate randomly as the square root of the number of steps,

and é; = 0 will cause the accumulated error in any component of ; to be

o

p:
approximately the corresponding component of é} times some average value
assumed by that component of ; during the integration.

The procedure I which computes F=F (x,y) has the following declaration:
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procedure f(n, x, yv, fv);

value n;

integer n;

real X3

real array yv, fv [0];

The parameters of the procedure 2 are defined as follows:

n - the number of dependent variables in the vectors ; and ;

x - the value of the independent variable

yv - the array in which } is stored

fv - the array in which f is stored after computation

The procedure start is the general multistep method starting procedure
described in paragraph E of this chapter. The procedure shanks is the Runge-
Kutta-Shanks integration procedure described in paragraph D of this chapter.

The coefficient array rkscoeff contains the Runge-Kutta-Shanks coefficients in

the order required by the procedures start and shanks. The number of function

evaluations rksfn is required by both start and shanks; the order rksorder is

required by shanks.
The array cowellcoeff contains the coefficients of (1-2), (1-3), and
(1-4) in the order Pyr Py v v s Pq, Co» Cyo + = o cq, My, Mys o o e Mq;

P. is in the zero position of the array.

0
The suggested initial step size dx is optional. The procedure first

sets cl =2 and doubles cl until ¢l = q. If dx = O or dx # O and

h < |dx| then cl is left alone. Otherwise, cl is doubled until h < lax| .

The integration now begins.
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is computed. The start procedure is called to obtain

. ] q - —
{fi i=1 > Yw’ yq and xq'

cl and c2 are adjusted if h was changed by the start procedure. c2 is
decremented by q since q steps took place in the start procedure. If c2 < m,

closing takes place. Otherwise,

-1

o
- Fb

is calculated from

" {fi }ic—-lo

and §; using the mid-range formula (1-4). m applications of (1-5) yield

1
6§ °f
q-3
and n is set equal to q.

For 3_5 i <m the following set of steps takes place. ¢2 is decremented

by 1, and xn+i is calculated.

—>
57ir )
n+1-%5
is calculated from
-I
5 °f . 1
n+1—l—§
and fn+i—l using (1-5). Yp.; i8 calculated using the predictor (1-2), and
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5;*1 is calculated. §£+i is next calculated using the corrector (1—5), and

§£+i is again calculated. Let ¥ be the vector which is the absolute value of

the difference between the last two calculated values of §;+i' Each component of

; is compared with the corresponding component o% éé/(lo . clp) for absolute

error and with the product of the corresponding components of é}/ (10 . clp)

and the last calculated value of §;+i for relative error. If any component

of v exceeds in both the absolute and the relative error tests, the steps
which calculate §;+i using the corrector (1-3), calculate §;+i from the

value of §;+i’ and which test the last two calculated values of §;+i are
repeated. When each component of v does not exceed in either the absolute or

the relative error test, the last values of §;+ and §£+i are retained.

i

The mid-range formula (1-4) is now used to calculate a new value of

Y, from ;
( 1 om ;

T s 0

i n+i J . ;

and ;
-] i

6 fn_% .

Tet v be the vector which is the absolute value of the differences between the
new value of ;; and the previously calculated value of ;g. If sufficient '
histofy is available for doubling the step size, i.e., n >q + m, each
component of v is compared with the corresponding component of

éé/(lo . el? . 2q+5) for absolute efror and with the product of the

1P

corresponding components of é}/(lo . cC . EQ+5) and the new value of 55 for

relative error.
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If each component of V does not exceed in either the absolute or the
relative error tests, the last m steps are accepted, cl and c2 are halved,

and the step size is doubled. If c¢2 < m, closing takes place. Otherwise
£} 42
i) i=0

becomes

{ ey q
i?n-m+2i} i=0 ’

ecomes ecomes
Y Yn-m’ g Vs

procedure had calculated these values, control returns to the step where

Y

m’ xq becomes X em’ and, as if the starting

is calculated using the mid-range formula (l-h)l

If any component of v exceeds in both the absolute and the relative
error tests, this component and each untested component is compared with the
corresponding component of é%/(lo . clp) for absolute error and with the
product of the corresponding components of é}/(lo . clp) and the new value of
5; for relative error. If each component of v does nét exceed in either the
absolute or the relative error test, the last m steps are accepted and the
step size remains unchanged. If c2 < m, closing takes place. Otherwise,

n becomes n + m and control returns to the steps which calculate

{Tnes } o2
Inei [ oi=1 -

If any component of v exceedsin both the absolute and the relative error tests,
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the last m steps are rejected, c2 is incremented by m, cl and c2 are doubled,
and the step size is halved. f% becomes f;, 55 becomes 5;, Xy becomes X and
control is returned to the step which calls the start procedure.

If sufficient history is not available for doubling, control transfers
as if the first component of ¥ exceeded both the first component of
éé/(lo . el® . 2q+5) and the product of the first components of
/(10 . ¢1® . 2%) with the first component of the new value of ;';n.

Closing takes place whenever m steps‘at the present step size would carry
the integration beyond xf, i.e., whenever c2 < m. If c2 > 0, the Runge-
Kutta-Shanks procedure is used to integrate from the present value of x to xf;
if c2 = 0, the preéent value of x is #f. In either case, the integration is
now complete.

Several efficiency‘measures are employed in the program. First, the

coefficients
{7}
{Cj} jzo ’
and
{ Mj} jSO |

are multiplied by the step size h and stored as multiplied until the step size
changes. Second, the vectors é;/(lO . e1®), er/(10 . c1P),
éé/(lo . el? . 2q+3), and é}/(lo S L EQ+5) are calculated from ea and er

and stored as calculated until the step size changes. Third, the corrector
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partial sum

> q
-1
hg f 2+hZ C.f,
J Jd

n-3 j=l

is computed and stored at each step; successive applications of the corrector
only require adding h - CO . fn to obtain ;n' Fourth, during applications of
the correctoy two arrays are used to store the last two célculated values of
;ﬁ; a flag is used to mark the last calculated value so that the next Qalue is
placed in the unflagged array and the flag is switched. This avoids transfer
from array to array as successive corrector iterates are computed. Fifth,
cyclic indexing is used to avoid moving the function value history after each
step or set of steps unless doubling takes place.

One unusual condition can result. If, during any step taken in computing
Iz m

Unai fi=1 2

the number of times through the corrector exceeds eight, control transfers as
if the set of m steps has been completed and rejected, i.e., a step size
halving was called for with a restart beginning at §n'

3. Flow Diagram and Program Listing

Figure 3 is the flow diagram for the Cowell method. The program
listing follows at the end of this section.

L. Results and Conclusions

The first important conclusion concerns the error control. The
specified tolerances for absolute and relative error are handled vectorially
to allow for systems in which the units of the various dependent variables are
not the same. Such systems arise in physics, for example, from reduction of

second order equations of motion in two dimensions to a first order system in
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which twé variables are positions and two variables are velocities. More
important, however, is the requirement at each step that the error in each
variable not exceed the specified tolerances divided by clp, where

O0<p<il. If p=0, conventional vectorial error control results. If

p # 0, however, an interesting phenomenon occurs. As the step size decreases,
higher accuracy is required; as the step size increases, less accuracy is
required. Hence, halving is often required sooner after a previous halving
than when p = 0, and halving immediately after doubling is less frequent
since the increase in error due to doubling is accompanied by a decrease in
accuracy required.

One major result of this error control is the linearity of error obtained
as a function of error asked. Earlier experiments [ 18] with p = O showed
that dividing the asked error by ten sometimes had little or no effect on
‘the error obtained; dividing the error asked by two sometimes decreased the
error obtained by a factor of ten. Present experiments with p = % show that
multiplication of the error asked by a constant usually causes the error
obtained to be multiplied by the same constant.

Division of the asked error tolerances by 10 . c1? rather than clf was
determined experimentally to be necessary in order to assure that the error
at each step be held to its desired value. This seems to be a peculiarity of
the mid-range formula type of error estimation; namely that the actual error
after each set of m steps can be as much as ten times as large as the estimate
given by the mid-range test.

Doubling occurs when'the estimated error is less than the asked error
tolerances divided by 10 . clp . 2q+5; hence, the doubling criteria are the

2Q+5

accepting criteria divided by . This factor was also chosen experimentally,
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and it is the same factor that was determined in earlier experiments with
p = 0 [1§.

One other consequence of the present error control is the limitation of
accuracy obtainable with a single precision program. When the relative
estimated error is required to be less than lO-ll for doubling to occur,
doubling is almost precluded since the computer can only carry ele&en to
twelve decimal digits. Under such conditions the number of steps increases
enormously, and the program is virtually useless. ‘For p = O and variables of
order of magnitude one, this situation occurs when the error asked divided by

10 . EQ+5 is about lO'll; however, with p # 0, this situation occurs when the

5@+3

step size is such that the error asked divided by 10 . clp . is about

lO_ll. Thus the smallest allowable asked error is reduced as p approaches one.

Since the even integer g is also involved in the calculation of the
smallest allowable asked error, it becomes apparent that the smallest allowable
asked error can be asked with small g, yet the larger values of ¢ offer their
biggest advantage at higher asked accuracies. Results show that best single
precision results tend to come from runs with q = ﬁ and ¢ = 6 at the askéd
accuracies which are reasonable for single precision; earlier experiments with
double precision asking higher accuracies [18 showed that best results came from
higher values of q.

The matching of the order of the start procedure with the order of the
Cowell method was somewhat difficult due to the limitation on accuracy asked.
The (L,4) Shanks formula seemed to give best results for q = 4, at all
accuracies and best results for g = 6 at larger asked errors; the (5,5) Shanks

formula seemed to give best results for q = 6 at smaller or asked error. These

results were not extensive enough to be conclusive, however,
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Corrector convergence can become a problem under two conditions. First,
the Runge-Kutta-Shanks formulas can take mach larger steps than the Coweli
method at lower asked accuracies. The step size chosen by.the start procedure
can be large enough so that the Cowell corrector will not converge, yet the
steps are accurate enough as Runge-Kutta-Shanks steps. Second, in rapidly
approaching a singularity the step size could suédenly become too large for
Cowell corrector convergence, for step size control is only exercised after
each m steps. The corrector coun£er was required to protect against the
corrector not converging; a halving is called for whenever more than eight
times through the corrector become necessary.

A final result concerns second order systems. Cowell's method was
originally a pair of predictor and corrector formulas to be used to compute
the positions as well as the Velocitieéidirect;y from the function value
history. The predictor and corrector to compute the positions was of one
higher order than the corresponding velocity formulas. Earlier experiments [13
were made using this type of approach. Present experiments required the
second order system to be reduced to a first order system; the predictor and
corrector are simply the velocity formulas. Both earlier and present
experiments show the positions to be more accurate than the velocities; hence
only time, not accuracy, is lost when a second order system must be solved

as a first order system.
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D. The Runge-Kutta-Shanks Method

1. Introduction

The procedure described is a generalization of the Runge-Kutta
method for solving a system of differential equations. It may be applied

to an arbitrary system of first-order differential equations of the form
y'= £ (x,y)

with the initial conditions

v (%) = v,
were § (0 = 13, 3 TR
: ? S )
R 20
f (X)y) = fl (X’yl’ IR yn) s;o = ylo
; ; :
fn (X’yl’ Y yn) yno

2. Description of the Method

The Shanks Method is'a single-step procedure for finding a numerical
solution of a first-order ordinary differential equation or system of
differential equations in which the derivatives of the dependent variables
may be expressed explicitly as functions of the independent and dependent

variables.

Consider the system of differential equation

v\ = (%,y)
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Suppose the value of 7 (x) is known. The value y (x + h) is approximated by

' - n — s
¥ (X + h) =Y (X) + h Z Y4 fi (x:h)Y))

i=1

where

fl (X’h;y) = f(X)Y):

— - — - i-1 -

£, (x,h,y) = £ (x + ah, y+h3Z Bijfj), i=2, .. ,m.

J=1

The coefficients o, (i=2, .. .,m,

Bij (i=2, .. .,m; J=1, ..., i-1), and yi(i =1, . . ., m)

are chosen so as to make the approximation correct to some order. A special

case of the Shanks formula is the fourth-order Runge-Kutta formula:

1,

o, = 1/2, ot = 1/2, o
Bgl= 1/2) 631 = O) 852 = 1/2} B)_,,l =_ Bh2 = O) B)‘I’B = l)
v, = 1/6, vy = /35 vz = 1/35 vy, = 1/6.

For useful values of the various combinations of o, B, and Yy, see Shanks [17J.

%. The Computer Procedure

The procedure was programmed for the B-5500 computer in the B-5500
Algol language. Single precision arithmetic (11 to 12 decimal digits) was

used.

3.1 Error Estimates and Step Size Control

In this procedure a single set of Shanks formulas is used. Suppose

6l



a vector ; (x) is known. Then the Shanks method is applied to one step of

size h{where h = %?v Ax is the length of the interval, and c¢ is a power of

two), and to two steps of size 27 as follows:

2

—_ nd m — -
v, =¥ (x) +BZ v 5(xh,7),

i=1

m

Y=Y (x) + 5 .2 Yi%(X:E:Y)

i=1

m
Vo = I ¥ §-.§l Yi££X * é’g’ym)'
S - . - . Y. -V
Both yp and y, are estimates of y(x+h). An error estimate Ek =[Y¢c = pk

(where f is an empirical factor) is calculated for each independent variable

Yy - If both Ek > Eak and Ek > Erklycklfor any dependent variable
oP oP
where Eak is an absolute error estimate, Erk is & relative error estimate,

and p is an input parameter, usually 1 or 1/2, then the step is rejected

and the step size is halved; otherwise the step is accepted and ;C is taken

as the vector ;(x+h). If for every dependent variable, either E_ > Pk or

k 2(j+550P

E, > Erk|yck|, where j is the order, then the step size is doubled.” If the
5 (3+3) p
step size h is larger than the distance to the end of the interval, then that

distance is taken as the step size.

5.2 Input and Output of the Procedure

The procedure is called as follows:
SHANKS (N,XI,XF,YV,F,M,ORDER,CF,P,EA,ER,DX) ;
where the parameters have the following meaning:
N - number of dependent variables;
XI - initial value of the independent variable;

XF - final value of the independent variable;
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YV - array of initial values of the dependent variables, based at zero
but with the zero element not used;
F - a function evaluation procedure, supplied by the user, called as follows
F(N,X,YV,FV);
where N is the number of dependent variables, X is the value of the
independent variable, YV is the array of values of the dependent
variables, and FV is the array in which the function values are placed;
M - the number of function evaluations in each application of the Shanks
method;

ORDER - the order of the Shanks formulas used;

CF - the array of Shanks coefficients, starting in the zero element arranged
as follows: for each i, the corresponding aisij’s, followed by o,
with the yi's at the end;

P - an exponent (usually 1/2 or 1) used in step size control (1 assuming

the errors are additive; 1/2 assuming that they are random) 3
EA - an array of absolute error asked;
ER - an array of relative error asked;
DX - a recommended starting step size (the actual starting step size will be

Dxl)_

<

XF - XI, where c is the smallest power of 2 for which
c

XF - XTI
c

The final values of the dependent variable are stored in YV before exiting
the procedure.

L. Flow Diagram and Program Listing

Figure L4 is the flow diagram for the Runge-Kutta-Shanks procedure .
A listing of the program is given at the end of this section.

5. Results and Conclusions

This procedure was used with systems of differential equations with
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L9

DXD « XF-XI
ENTER COUNT « 1

X« X1

OXH <« DXD/(COUNT+COUNT) SET ARRAY ChLCULATE Ty %me

Tronar - SO (oRoERe3) [ | SIZED DSH « TRUE =% granks skanks [ sHanks K-
EFACT « 1/2 * (ORDER-1) COEFFICIENTS FORULAS FORMULAS FORMULAS

DXD « {XF-XI)/COUNT H COUNT « CCUN'HCOUNTJ
' .

COUNT « COUNTCOUNT RESET ARRAY
K« kel K e YES ES « | YC[K] - vp [K] | Dcounro«qncounmcoum " OF STEP
« < S e DXD « DXt "1 osu « ™
COUNT * P ® EFACT DXH « (XF - XI}/(COUNT+COUNT) OSK « FALSE Sééﬁmlms
[l
DSHe«
FALSE
10
1
COUNT « DCOUNT « 1 RESET ARRAY
. . NO X « (COUNT - DCOUNT YES YES Xl « X
DCOUNT - BCOUNT-1 ( ) OSH « FALSE I K | ] OF STEP
YW o« YC DX + X1 OXD « X -X SIZEQ®
DXH « DXD/2 COEFFICIENTS
YES "o O
pSH = TRUE
COUNT « COUNT/2 RESET ARRAY
YES DCOUNT « DCOUNT/2 OF STEP
DXH « DXD SIZE
DXD « (XF - XI)/COUNT COEFFICIENTS

Ho ‘

Figure 4, Flow Diagram for the Runge~Kutta-Shanks Procedure.



analytié solutions, as well as with the three-body problem. It gave slightly
more accuracy than was asked.

Tn order to reach the end of the interval more accurately, the steps
taken were binary fractions of the total interval. Hence, it was necessary
to use halving and doubling rather than the continuous step‘size control of
previous experiments [18]. Although this caused the rejection of more steps,
it prevented roundoff in the independent variable.

The procedure was first run without the empirical factor f (i.e., with

f= l) mentioned in 3.1. The results were more accurate than asked.

1

Qozz‘der_:L

for some formulas (in particular, 8-10 and 8-12), the desired accuracy was

The theoretical value, f = , was then used. It was found that

not reached.

1

2order-l

case, the results were good for most formulas, but the Shanks 8-10 formulas

Finally, runs were made with a compromise value, f = In this
still sometimes did not obtain the desired accuracy.

It might be noted that the most accurate results were usually obtained
with the Shanks 4-4 formulas.

Tt is recommended that further experimentation be done in the area of
step-size control with the Runge-Kutta-Shanks method. In particular, other
values for the factor f might be used. It might be desirable to determine

a particular constant for each set of formulas.
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BEGIN
CFDLIJeCFLIIxDXD}
CFHUTI¢NCFI«CFTIIxDXH3

ENDJ
XeXIs
XMeXT4DXH3
L1t1DSWeTRUES
FCNoXsYVeGV)S .
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Lel+1)
BETA«CFDIL]}
FOR KefSTEP SUNTIL N DO YPLKI¢FVIJsKIXBETA+YPLK]S

ENDJ
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END}
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BEGIN
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END3J
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IF DSW THEN
BEGIN

DKTRe¢DKTR+13
COUNT2€¢COUNT}
COUNT«COUNT DIV 2}
DCOUNT€DCOUNT/23

DXHeDXD3

DXDe«DXT/COUNT}
FFACTOR¢COUNT#PXEFACT}
IF CFSW THEN

BEGIN

END ELSE
BEGIN

FOR I1¢OSTEP {UNTIL NCF1 DO CFDII+NCFI€CFIIIXDXD}$
CFSWeTRUES

END}

ENDJ

XMe(COUNT2+41~DCOUNT=DCOUNTIXDXH+ XT3

GO 7O L1
EXITS

ENDS

FOR 1¢0STEP {UNTIL NCFi DO CFDLI)¢CFII]IxDXD}
CFSWeFALSES '

00200000
00201000
00202000
00203000
00204000
00205000
00206000
00207000
00208000
00209000
00210000
00211000
00212000
00213000
00214000
00215000
00216000
00217000
00218000
00219000
00220000
00221000
00222000
00223000
00224000
00225000




E. The General Multistep Method Starting Procedure

1. Intrecduction
The gene?al multistep method starting procedure is a B-5500 ALGOL
single-precision Runge-Kutta-Shanks procedure used for obtaining starting
values for the Adams, Butcher, and Cowell multistep methods. The declaration
is as follows:
integer procedure start (m, xi, xf, cl, ea, er, f, m, x, yiv,
yh, fh, yfv, cyi, cym, pa, p,
fneval, rksconst);
value n, xi, xf, cl, m, cyi, cym, per, p, fneval;
integer n, cl, m, cyi, cym, pa, fneval
real xi, xf, X, P}
real array ea, er, yiv, yfv, rksconst [0], yh, fh [0,0];
procedure T

2. Description of the Procedure

The parameters of the procedure are defined as follows:
n - the number of dependent variables

xi - the starting value of the independent variable x passed to the

multistep method

xf - the final value of the independent variable x passed to the

multistep method

cl - the integer counter (gi_-‘ﬁi)/h from the multistep method

the absolute error vector passed to the multistep method

&

er - the relative error vector passed to the multistep method

the procedure which computes f(x,y) = v

1+
]

the number of history points to be calculated by start

18
'
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x - the value of the independent variable at which start begins its

- integration

yiv - the array which contains on entry for Adams and Cowell the values
of the dependent variables at x and which contains on exit for Cowell the
values of the dependent variable at the mth point calculated by start

yh - the array which contains on entry for Butcher in row cyi the values
of the dependent variables at x and which contains on exit for Butcher the
values of the dependent variables at each of the m points calculated by

start

fh - the array which contains on entry in row cyi the function values at
x and which contains on exit the function values at each of the m points ;
calculated by start

yfv - the array which contains on exit the values of the dependent variables
at the mth point calculated by start for Adams or the m/2th point calculated
by start for Cowell

cyi - the cyclic index identifying on entry the row of yh in which the
values of the dependent variables at x are stored for Butcher and the row of
fh in which the function values at x are stored for any method

cym - the number of rows in the arrays yh and fh

pa - the parameter which is zero for Adams, one for Cowell, two for Butcher

p - the exponent such that the absolute error at each step is not to
exceed SE/EEE and the relative error at each step is not to exceed g{/g}g

fneval - the number of function evaluations required by the Runge-Kutta-

Shanks procedure
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rksconst - the array which contains the Runge-Kutta-Shanks coefficients in
the same order as required by the procedure shanks described in section D.

The value of start on exit is two to the power of the number of halvings
whichrtook place within start.

Although the base of the arrays ea, er, yiv, and yfv and of the rows of yh
and fh is zero, the n components are placed in position 1, 2, ..., n and the
zero position is unused.

The procedure attempts to calculate m (if m is even and positive) or
m+ 1 (if m is odd) Runge-Kutta-Shanks steps of size h = (xf - xi)/cl. After
each even step of size h is taken, one step of size 2h is taken over the
interval spanned by the two steps of size h. The absolute value of the
differences in each dependent variable between “he 2h-step and the second h-step
is compared with the corresponding component of éé/(cl/é)p for absolute error
and with the product of the corresponding component of é?/(cl/?)p and the
corresponding dependent variable value from the second h-step for relative
error. If each component of the difference does not exceed in either the
absolute or the relative error test and m steps have not yet been taken, the
process of two h-steps, one 2h-step, and test is continued. If any component
of the difference exceedsin both the absolute and the relative error tests,
cl is doubled, h is halved, and integration begins again at x. The first step
of previous size h was saved and becomes the first step of present size 2h.

The m calculated function values from h-steps are placed in rows (cyi+l)
mod cym, (cyi+2) mod eym, ..., (cyi+m) mod cym of the array fh. For Butcher,

the corresponding dependent variable values from h-steps are placed in the

corresponding rows of the array yh; if m is odd, the values of the dependent

T



variable after h-step m + 1 are placed in row (cyi + m + 1) mod cym of yh.
For Adams, the dependent variable values from h-step m are placed in the array
yfv. For Cowell, the dependent variable values from h-step m are placed in

the array yiv and from h-step m/2 (m is always even for Cowell) are placed

in yfv. If m is zero, no calculation takes place.

3. Flow Diagram and Program Listing

Figure 5 1s the flow diagram for the starting procedure. The

program listing follows at the end of this section.
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Figure 5.

Flow Diagram for the General Multistep Method Starting Procedure.
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Figure 5 (Continued).
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Flow Diagram for the General Multistep Method Starting Procedure.
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Figure 5 (Continued). Flow Diagram for the General Multistep Method Starting Procedure.
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FO
END

END 3

R J
]

t=1 STEP 1 UNTIL N DO YFVIJ)IS=GIK2JIXTEMP +YFV[J]

BOOLEAN PRUCEDURE COMP(NSEAVSERVsY,»7)3

VALUE
INTEGE

N3
R N 3

REAL ARRAY EAVSERV,Y»Z101}

BEGIN
INTE
REAL
LABE

FOR J t=1 STEP 1 UNTIL N DD IF (T1

BEGI

GER J 3
Ty 3
L Lt 3

N

"IF 71 SERVIJIXABS(Z{J))THEN

BE

EN

END
comMp
L1t
END 3
CNTR ¢
IF M #
BEGIN
COEF

INT
TWOH
H i=
FOR
BEGI

HC

GIN

COMP s$=FALSE 3

6O TO L1
]
3

3=eTRUE 3

z] }
0 THEN

FCNT

-2 }

$=XF =XI 3
t=(INT +INT)/CY 3

INT /Ct 3

I $=0 STEP 1 UNTIL COEFFCNT DO

N
[1)s=(T1

t=RKSCONSTII1)IXH 3

TWOHCILI)3=T1 xTWOH

END

3

INDX t=CYI MOD CYM 3
T $2(C1 /2)*P 3
FOR J #$=1 STEP 1 UNTIL N DO

t=ABSCYLJI=ZLJ1))>EAVIJITHEN

$=S(CCFNEVAL +3)xFNEVAL)/2)=2 3
FNMAX $=FNEVAL
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III. THE EXECUTIVE PROCEDURE

A. Introduction

The executive procedure acts in an administrative and supervisory
capacity. It does the bookkeeping and makes the decisions as to which
methods are to be used, but does none of the actual integration. The
executive procedure uses as subprocedures five basic integration routines;
these are:

1) The Adams-Bashforth-Moulton routine,

2) The Stetter-Gragg-Butcher routine,

3) The Cowell constant Nth order difference routine,
4)  The Runge-Kutta-Shanks routine,

5) The start and restart routine
(containing a separate Runge-Kutta-Shanks routine).

These five basic routines do the actual integration. Each is described in
Chapter II of this report.

The executive procedure works in the following way. When a call is made
in the procedure to integrate from point a to the point b, this interval is
divided into eighths. The first eighth of the interval is integrated by o¢ne
method for each of two different orders, and the time taken by each recorded.
The second eighth is integrated by another method, also for two different
orders, and the times recorded. The winners then compete against'each other
over the next fourth of the interval. That is, the fastest Qrder of the first
method and the faster order of the second method are both used to integrate
the second fourth of the interval, and the time taken by each recorded. The
faster method of these two is then presumably the best (fastest) of the four

tried, and it is used ( alone) to integrate over the last half of the interval.

" Préceding page' biank



All of the times measured above are then logged in a cumulative history file
and the winners and losers noted.

This file then is used as the basis of selecting which methods and orders
are chosen each time. The selection process is as follows: The first of
the two methods is chosen at random. The second method is chosen to be
the method showing the best history of success among the three remaining
methods. Then within each method the same kind of selection process with
respect to orders is used. In this way the past performance of the different
methods and orders influences the choice of Whichiare allowed to compete,

such that the more successful have a higher probability of being selected.

B. The Selection Process

There are four methods available for the integration process, and within
each method there are four orders.available. The methods and orders are as
follows:

1) The Adams method with orders L(%4), 5(4), 6(%), 7(5).

2) The Butcher formulas with orders 3(4), 5(4), 7(4), 7(5).

%) The Cowell method with orders T(5), 9(5), 11(5), 13(5).

4) The Shanks formulas with orders L 5,6, 7.
Each order of each multistep method has an associated Runge-Kutta-Shanks
restart proc;dure order given in parenthesis after the method order. Details
on these methods are given in Chapter II of this report. The magnetic tape
containing the coefficients has several additional orders of each method, but
the program is now set to use Jjust those mentioned above,

The selection process is the following. The first of two methods is

chosen at random (using a random number generator) from among the four
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available. The second method is chosen to be the method showing the best
history of success among the three remaining methods, with the cumulative
history file being used to determine the degree of success. Then within
each method the same kind of selection process with respect to orders is
used. That is, the first order is chosen at random, and the second order
is chosen on the basis of which of the remaining three has been the most
successful (fastest running) order of that method. Thus it is seen that
the past performance of the different methods and orders influences the
cholce of which are allowed to compete, such that the more successful have
a higher probability of being selected.

In using the time as the sole estimate of performance efficiency, it is
assumed that all orders and methods have satisfactorily met the accuracy
requirements. The accuracy requirements of each method are met by controlling
step size and making'error estimates at each step. The method of error
estimate is different for the different methods. 1In the Runge-Kutta-Shanks
single step method, the error is estimated by taking two half steps and
then a whole step. In the Adams and Butcher methods the difference between
predictor and corrector is used. In the Cowell method a mid-range formula
is used. (Only in the Adams and the Runge-Kutta-Shanks cases is there good
theoretical justification for using these methods to calculate the actual
error -- the error estimates in the Butcher and Cowell methods are essentially

empirical.)

C. Organization of the History File

The history of the effectiveness of each method is recorded in a file

called "AB31HST" and organized in the following manner.
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Associated with each order of each method are two numbers. The first
(a positive number) records the time associated with trials in which this
order was the winner. The second (a negative number) records the time
associated with trails in which it was the loser. The sum of these two
numbers is taken as the "score" or performance number and will be greater
if the order of this method has been a consistent winner and will be less
(more negative) if it has been a consistent loser.

- Associated with each method then is a method score analogous to the
order scores just described. That is, each method has one positive and one
negative number recording the time spent winning and losing respectively.
In addition to this, a history is also kept of which methods the wins and
losses were against, but this part of the history is not used in selecting
competitors.

The history file is printed in an output file called "HISTORY." In
describing this, use will be made of an abbreviated notation. A stands for
Adams method, B for Butcher, C for Cowell, and S for Shanks formulas. A
number given following the letter designates the order of that method where
1 stands for the lowest order available, 2 for the next lowest, ete. Thus
A2 stands for the second highest order Adams method. A sign following the
letter or number designates winning time or losing time for this method- .
order. TFor example, B2+ designates winning time for Butcher's method, second
lowést order; ¢ designates losing time for Cowell's method; etc. Finally,
if a letter follows the sign in parenthesis, this designates which method
the win or ioss was against; thus B+(A) designates winning time by Butcher
against Adams. With this notation the organization of the history file is

as follows:
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The first three items (printed on the first line of the output of the
history file) are not times but other bookkeeping items. The first number
gives the date (in the form year, day) that this particular history file
was initialized, that is the date the tape was first created. The second
number gives the total number of times the procedure has been called (using
this particular history file). The third number gives the present value
of the random number used in generating the random number sequence.

Following these three numbers come the cumulative times the varioué
methods spent winning and losing. These are organized in a 9 row - 8 column
matrix. The first 4 rows give wins and losses of the various orders within
each method, that is the results of the competitive trials over the 1/8
sections of the range of integration. Table I gives this organization in
terms of the notation described above.

Following this is a row giving cumulative winning and losing times by
methods; that is, the results of the trials over the l/h sections of the

range of integration. This row is organized:

-~ , - - + -
at A BT B ot c s s”.

The last four rows give a more detailed breakdown of the line above, giving
the method against which the winning and losing times were made. It is
organized as in Table II. It is noted here that entries of the form A+(A),
B-(B),‘C+C, etc. will all be zero, since methods do not compete against

themselves.
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TABLE I

ORGANIZATION OF CUMULATIVE WINNING
AND LOSING TIMES BY METHOD AND ORDER

N - - Y Vi VSV
Bt B1~ B2t B2~ B3 B3~ st Bl
et c1” et ce” o3t 3" out ol
s1t s1” st se” 53+ 53" it sh”

Notation here: A = Adams, B = Butcher, C = Cowell, S = Shanks}

1 = lowest order, 2 = second lowest order, etc;

+ stands for win, - stands for loss.

TABLE IT

ORGANIZATION OF CUMULATIVE WINNING
AND 10SING TIMES BY METHOD VS. METHOD

sHa) AT BT BT ) @ st)  sT(a)
HE a® e Fe e e sTe) sTe
ate)  aT(c) B(c) B(C) cte) ¢ s s
aHE)  AT(s)  B(s) B8 (e (8 s(s)  s7(®)

Notation here: A = Adams, B = Butcher, C = Cowell, S = Shanks;

+ stands for win, - stands for loss.

A+(S) stands for Adams win against Shanks,
c7(B) stands for Cowell loss against Butcher, etc.
Entries of the form AT(a), or ¢7(C) ete., should all be zero since &

method does not compete against itself.

96



D. Inputs to the Executive Procedure

A call in the executive procedure would look like the following}
DIFEQINT (N, XI, XF, Y, F, P, EA, ER, DX)
Here the identifiers in parenthesis are the inputs to the procedure and
represent the following information:
N is the number of equations in the system to be integrated,
XI is the initial value of fhe independent variable,
XF is the final value of the independent variable,
Y is the initial values of the dependent variables. Y is a vector
(one dimensional array). At the conclusion of the procedure Y is set to
the final values of the dependent variable; that is, Y is also the output
variable.\
F is the procedure for calculating dy/dx as a function of x and y.
This procedure must be written by the user and describes the system of
differential equations being integrated. It must be written so as to have
four parameterss:
(a) N, the number of equations,
(b) X, the independent variable,
(¢) Y, the dependent variable (vector),
(d) FV, the vector values of dy/dx at the point x, y.
The first three parameters are input and FV is the output.
P is the error accumulation parameter. This parameter expresses
the user's opinion as to how the errors are going to accumulate over the range
of integration. For example, if it 1s expected that the errors will be random
then P would be set to 0.5. If it is expected that the errors will accumulate
linearly then set P = 1. These are the two most usual cases but other

situations can occur.
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A is the absolute error vector. This vector gives the acceptable
absolute errors in the value of Y final.

FR is the relative error vector. This vector gives the acceptable
relative error in the value of Y final. It is the weaker of the two conditions
EA and ER that is met for each component of the wvector Y.

DX is the estimated value of the initial step size. This esfimate
need not be especially accurate since the individual methods will adjust

the step size to the appropriate value.

E. Updating of the History File and Forgetting

The times recorded in the history file are cumulative. That is, éfter
a competition is held, the times taken by the competing methods and orders
are added to (for a Win) or subtracted from (for a loss) the éppropriate
positions in the history file. Thus, the entries in the history tables
represent an index expressing the cumulative past performance.

Decisions as to which method or order within a method is considered to
have the best performance history are made on the basis of the sum of the
win and loss entries for that method or order. The method or order having
the maximum value for this sum is considered to have best history (remenbering
that the loss entries are negative). One notes that not all the history file
is used in the decision meking process; in particular, those entries in
Table II are not used in decision making but are recorded only to give the
user a more detailed account of the competitions.

One further feature is introduced into the learning process and this is
the gradual "forgetting" of events in the more distant past. This is ac-
complished by multiplying those history scores used in the decision making

by a factor less than one, just before the most recent histories are added.
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This causes the events in the distant past to have less influence than those
more recent in detgrmining the performance figure of an order and method.

The factor used is 0.98 but it is not known what would be the optimum factor.
Note that the entries in the history file described in Table II do not
involve forgetting. Since fhese entries are not used in any decision making
process but only tabulated for the user's interest, forgetting would serve
no practical purpose here. The entries in Table II represent then a total

or unattenuated history of the competition between the various methods.

F. Reading of Coefficients and History Files

Also needed as input to the executive routine are the tables of co-
efficients associated with the various methods and the past performaence
history file. These are read in to the procedure the first time the procedure
is called and a flag set (in an element of an arra& declared OWN) to indicate )
that these have been read in once. This information is stored in an array
declared OWN and need not be read in again during the operation of the program.

The coefficients are stored on a tape file called "TAPES31." It contains
the following coefficients:

Adams'method, orders 4 through 10,
Butcher's formulas, orders 3, 5, T, 9, 11,
Cowell's method, orders 7, 9, 11, 13,
Shanks formulas, orders 4, 5, 6, 7, 7, 8, 8.
Only four orders of each method are actually used.
The history is stored in a tape file called "A831HST." This tape must

be mounted with a write ring and Is updated every time the procedure is called.

G. Outputs of the Executive Procedure
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The executive procedure returns the final value of the independent
variable as its principal output. This is returned through the same variable,
Y (a vector), described in Inputs to the Procedure, paragraph D of this Chapter.

There are several other types of output that are printed. First, when
the procedure is called for the first time and reads in the past performance
history file, it prints out this history in a print file called "HISTORY",

Alsc printed out in this file is a pair of numbers giving the method
and order that is about to be used and the times for each order and method
after the comparisons have been made. This information is printed in a two
digit code, the first digit representing the method and the second (if present)
indicating the order. The method code is:

O represents Adams,

1 represents Butcher,

2 represents Cowell,

3 represents Shanks.
The order code is such that O represents the lowest order, 1 represents the
next lowest order, etc.

Also printed in the file "HISTCRY" are the results of comparison runs
in which the results (values of the dependent variable) of the two competing
method orders differ by more than twice the allowed errors. Also printed are
the initial and final values of the independent variable, the two differing
values of the dependent variables and an integer telling which component of
the dependent variable appears to be in error.

Other messages associated with anomolous conditions are also printed in
this file. In particular an integer overflow condition occurs if the step
size collapses. Recovery from step size collapse can usually be effected
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but the message "INTEGER OVERFLOW" will be printed in file "HISTORY" whenever
it occurs.
Finally, the procedure outputs the updated performance history by writing

it back into the "A831HST" tape file.

H. Flow Diagram and Program Listing

Figure © is the flow diagram for the executive procedure. The program
listing for the executive procedure follows at the end of this section. Since
the individual methods and restart programs are also listed elsewhere in this

report, their listing here is given in "squeezed" form.
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IS THIS
FIRST CALL
ON EXECUTIVE

READ

N READ IN HISTOR

CONSTANTS ~ p———1 FILE "AB3IHST"

Y

WRITE RISTORY
IN FILE
"HISTORY"

PROCEBLRE? “TAPEB31" REWIND
SELECT SELECT TWO SELECT TWO COMPARE THE TWO ORDERS OF
00 HETHODS ORDERS FOR ] ORDERS FOR FIRST METHOD BY INTEGRATING

FIRST METHOD SECOND METHOD OVER 1/8 OF INTERVAL

PRINT RESULTS IN
ERROR IN FILE T
“HISTORY". AVERAGE

COMPARE TWO ORDERS OF SECOND
METHOD 8Y INTEGRATING OVER
1/8 OF INTERVAL

PRINT RESULTS IN
ERROR IN FILE
"HISTORY". AVERAGE

COMPARE WINNING ORDERS OF
EACH METHOD BY INTEGRATING
OVER 1/4 OF INTERVAL

PRINT RESULTS IN
pe—v ERROR IN FILE

“HISTORY". AVERAGE

UP DATE HISTORY WITH SCORES FOR
WINNERS AND LOSERS AND WRITE IN
FILE "AS31HST*. WRITE SCORES
IN FILE "HISTORY"

INTEGRATE LAST HALF
OF INTERVAL BY WINNING
METHOD

? P99

Figure 6. Flow Diagram for the Executive Procedure.
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RoDXs CONs FUNCTION,EXsRKCo»START» SHANKS»YIV,RKSNFsRKSODRIZVALUE NsXIsXFsK»0000
DXsCONSEXsRKSNFsRKSODRIREAL ARRAY YIVIOJIZINTEGER RKSNFsRKSODRJINTEGER N,0000
K3PROCEDURE FUNCTION,SHANKSS INTEGER PROCEDURE STARTSIREAL XIsXFsDXsEX3REA0000
L ARRAY RKCIOJSREAL ARRAY CON,EA,ER[OIIBEGIN REAL ARRAY Y,FIO0!16,03NI3RE0QOOO
AL SC1,X3REAL DX23REAL DX1»,C0OA»COB»COLA,COLB»COGA»COGBSTESTSTEMPY,TEMPF0000
A1sA25A35C23INTEGER I5JsCYLsINDEX,C1sMIINTEGER CYL3JREAL ARRAY SUMYIPsSU00OOO
MYP»SUMYC,FVITOSNIS{ ABEL STRRT,RESTARTSFINISHIREAL P2,T1,T23INTEGER COUNOOOO
ToTOTCNT,CYL1,CYL2sM13LABEL DUBSRTSREAL ARRAY COOL033xK)3INTEGER CYO3 INT0000
EGER COUNTERSINTEGER KM13REAL OMT»K6-,K615sK623REAL INTVIINTEGER KM3»J2,J30000
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2 JO6SREAL XDXT,XDXIZREAL ARRAY RE,AECOSNISFOR I«1STEP 1UNTIL N DO Y{O0,11eY0000
IVIII3IF K=10OR K=20R K=3THEN OMT«0,5ELSE OMT¢2/33K6¢O6XK3IK61¢(6XK)+13K62¢0000
(6XKIE23 KM ¢K=13 INTVeXF=XI3XeXI3C1¢13WHILECCI<K+1)ORCC(ABSCINTVI/ZC1)>ABS(0000
DX)IDOD C1¢C1+C13C2¢C13P2¢1/7(2%C(2xKI+4)ISCYLEOSCYDCO3TOTCNT«O3FUNCTIONC(NOOOO
sX1oY[Os*)pFLO»*))SRESTARTSCOUNTFReKMi3C1eCIX(TI€START(NsXIsXF5sC12,EASER,FQ000
UNCTIDNsKML s XoYIVoYsFoYIVoCYDr16:2oEXoRKSNFsRKC)IZC2¢C2%xIeKM13CYLECYDIDUOOOO
BSRTSDX€INTV/C13KM3€3IXKM{3FOR JeoSTEP 3UNTIL KM3 DD BEGIN J2€2xJ3C00CJ1¢0000
CON[J2+1IxDX3CO0LJ+1)1¢CONLJ243IXDXSCO01J+2)¢CONIU2+5IXDXIENDSISCLeCI*EX3FO0000
OR 1€1STEP {UNTIL N DO BEGIN AECTJI¢EACTI/SCISRE[TIERLTI/SCI3ENDSALCCONTIOOOO
K6IxDX3A26CONIK61IXOX3A3¢CONEKE2IXDXSSTRRTSXDXTeX+(DXXOMT) 3 XDXeX+DX3FOR 0000
I¢{STEP 1UNTIL N DO SUMYIP[IJ¢SUMYPLTIIeSUMYCII1€¢03FOR JeOSTEP 1UNTIL KM10000
DO BEGIN CYL3€(KMImJ+CYLIMOD 163J3¢3%J3J6¢6%J3C0A«CONTJ6I3COBCO0LU3)3C0000
OLA«CONTIJ6+2)13COLB«CO0CJ3+1)3COGA¢CONTIJ6+4)3C0GB«CO0[J342)3FOR T1«1STEP 10000
UNTIL N DO BEGIN TEMPYe€YICYL3,I)ITEMPFeFICYL3,113SUMYIPLTI)eSUMYIPLTI+(C00000
AXTEMPY) +(COBXTEMPF) S SUMYPLI1€¢SUMYPI T4+ (COLAXTEMPY)+(COLBXTEMPF)SUMYCLI0000
J¢SUMYCT I Y+ CCOGAXTEMPY)¢(COGBXTEMPF)IENDIENDIFUNCTIUONCN,XDXT,SUMYIP,FV1)0000
JFOR Y€1STEP QUNTIL N DO BEGIN TEMPFeFVILIISSUMYPLTI]eSUMYPLTII4CAIXTEMPF)O0000
3SUMYCII)eSUMYCIIN+CA2XTEMPF)SENDIFUNCTIONC(No XDX, SUMYPFV1)3CYLECCYL+1IM0000
0D 163CY0€(CYL+KMIIMOD 163COUNT¢03FOR T€1STEP SUNTIL N DO BEGIN TEMPY&SUOONO
MYCLII+(AIXFVAITI)IIT1€AECTIIT2¢ABSCRELTIXTEMPY)ITESTCABSC(TEMPY=SUMYPLT1)0000
JIF TEST>TL AND TEST>T2 THEN BEGIN C2¢C2+¢C23CYL¢(CYL+15)MOD 163CYDe(CYL+0000
KM{IMOD 1831F C2<KMy THEN BEGIN SHANKS(NsXoXFoYLCYO»*]2FUNCTION»RKSNF,RK0000
SODRsRKCHEXsEA»ER2DX)SG0 TO FINISHIENDSIC1¢C1+C1360 TO RESTARTIENDSIYLCYD»0000
1JeTEMPYSIF TEST<P2xT1 OR TEST<P2xT2 THEN COUNT«COUNT+1JENDIC2€C2=13XeXF0000
= (DXXC2)3IF C250THEN GO YO FINISH3IF C2<iTHEN BEGIN SHANKS(NsXsXFsY{CYD»0000
*YoFUNCTION,RKSNFsRKSODRoRKCHEX2FALER,DXI3GO TO FINISHIENDIFUNCTION(N,X»0000
YECYOo*IpFLCYOs*])SIF COUNT=N THEN BEGIN TOTCNT¢TOTCNT#13IF TOTCNT23THENOOOO
BEGIN IF COUNTER22xK THEN BEGIN COUNTER€03C2¢C2/23C1¢Ci/231F C2<iTHEN B0OOOO
EGIN SHANKS(NsXoXFoYICYO,*1,FUNCTIONsRKSNFsRKSODRoRKCHEXSEARER,DX)3G0O T00000
FINISHIEND3TOTCNTC03FOR 1¢1STEP fUNTIL N DO FOR J¢1STEP fUNTIL KM1 DO B000OO
EGIN CYL14(CYD+16=JIMOD 163CYL2¢(CYD+16=C2xJIIMOD 163 YICYLY1-T)eYICYL2,1]0000
SFICYL1sIJ€FLCYL2-T)3ENDSGD TO DURSRTIENDIENDSENDSCOUNTER¢COUNTER+1I3G0 T0000
0 STRRTIFINISHIFOR T1€1STEP 1 UNTIL N DO YIVLIJeYICYO»IIZEND BUTCHER3PROCOOOO
EDURE COWELLC(NsXIoXFsYoFoFAsER2P2DXsRKSFNsRKSORDERsRKSCOEFF»QsCOWELLCOEFO0000
FoSTART»SHANKS) 3B VALUE NsXIsXFoPsDXsRKSFNsRKSORDER,Q 3 INTEGER NsRKSFN,RKS0000
ORDER»Q SREAL XIsXF,P»DX SREAL ARRAY Y,EAER,RKSCOEFF,COWELLCOEFF[0)3PR0O000O
CEDURE FosSHANKS 3 INTEGER PROCEDURE START 3BEGIN INTEGER Ci»MsMM1,QP1»TQPOOOO
1oINDX»I1012513,100sKeCY] 3INTEGER CORRECTCNT SREAL INT,C25DFACTORsXoH»,T0000
1o72sT3sT45TS50oT6 3BOOLEAN DFLAGSPFLAG SREAL ARRAY FHIO2Q +Q,08N]oYMID1,Y0000
PaYCoYMsCSsFPoHDMIF ,HOMIFMID,EAV,ERV,EAVD,ERVDIOsNIsPCOEFFSCCOEFF,MCOEFFO00Q00
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IsYMIJI+TE xFHIT1o,J1+T2 xFHI{I2,J1END 3TF DFLAG THEN BEGIN FOR J t=1 STEP00O0O
§ UNTIL N DO IF (T2 33ABSC(T3 8=2Y{JIJi=YM{LJIDI>EAVDIJITHEN BEGIN IF T2 >0000
ERVDIJIXABSCT3)THEN BEGIN IF T2 >EAV{JITHEN BEGIN IF T2 >ERVIJIXABS(T3)T0000
HEN GO TO L4 END 3GO TO L3 END END 3C2 $=C2 =M 3C2 #$=C2 /2,0 3IF PFLAG T0000
HEN FOR J t=1 STEP 1 UNTIL N DO Y{Jlt=YPIJIELSE FOR J 8=1 STEP 1 UNTIL NOOOO
DO Y{JIexYCLUISCYL ¢=Ci DIV 2 BIF C2 <M THEN GO TO CLOSER JINDX s=INDX +0000
1 3FOR K s=1 STEP § UNTIL @ DO BEGIN INDX 3=(INDX +1)MOD TQP1 311 8=(CIND0OOOO
X +KIMOD TQP1 3FOR J t=1 STEP 1 UNTIL N DO FHLINDX»,J)t=FHLI1,JIEND 3G0 70000
0 DOUBLER END 3J 8=0 3L3sFOR J taJ) +1 STEP 1 UNTIL N DO IF (T2 $sABSC(T30000
13Y[J1)=YMIJI)I>EAVIJITHEN BEGIN IF T2 >ERVIJIxABS(T3)THEN BEGIN L43INDOOOO
X $=¢CYI =MIMOD TQP1 3LS5:C1 s=C1 +C1 X 8=XF =C2 xH 3C2 §=C2 +C2 3GO TO 0000
STARTER END END 3C2 t=C2 =M 31F ¢2 2M THEN BEGIN IF PFLAG THEN FOR J t=10000
STEP 1 UNTIL N DO BEGIN YMIDILJ1e=Y[JI3YCJI3aYPTJIJHOMIFMIDEJIS=HOMIFLJ0000
JEND ELSE FOR J 8$=f STEP {1 UNTIL N DO BEGIN YMID1{J)s=aY[JI3Y[JIt=YC[JIBHO000
DMIFMIDUJIt2HOMIFLJIEND 3DFLAG 3=TRUE 3GO TO ACCEPT END 3IF PFLAG THEN F0000
OR J t={ STEP 1 UNTIL N DO Y[J1s=sYP[JIELSE FOR J s=1 STEP { UNTIL N DO Y0000
(JIt=YCTJISCLOSERSIF C2 >0 THEN SHANKS(NoXsXFsYsFoRKSFNoRKSORDER-RKSCOEF0000
FoPsEAsERSABSCINTYI/C1ISEND 3PROCEDURE SHANKSINsXToXFoYVeFoMoORDERSCF»P»E0000
AsERsDXIIVALUE NoXT,XFsMoORDERsP,DXS INTEGER NoM,0ORDERSREAL XIsXF,PsDX3RE000O
AL ARRAY YV,CFsEA-,ER[TOJ3PROCEDURE FJBEGIN INTEGER I»JsKsLsCOUNT»COUNT2,10000
I,NCFIINTEGER NCF13INTEGER DKTRIREAL EFACTSREAL BETA»DCOUNT,DXDoDXHsDXT»0000
EFACTOR,ERANGE,ES,GAMMAo Xo XM3BOOLEAN CFSW,DSWIREAL ARRAY CFD{Ot(M+3)xM=20000
JoFVIOIM=1,08N]»GVoYCoYMoYPLOSINISDEFINE CFH=CFD#3LABEL L1oL2,EXITSINTEGEQOOO
R STEPRsSTEPS3Me¢M=13STEPSeSTEPR«O3DXDeDXTeXF=XI3IF DXT=20THEN GO TO EXIT30000
IF DX=OTHEN DX¢DXD3COUNTe{3WHILE ABS(DX)<ABS{(DXD)IDD BEGIN COUNT¢COUNT4C00000
UNTSDXDeDXT/COUNTIENDSCOUNT2¢COUNT4COUNTIDXHeDXT/COUNT23DCOUNT«COUNTIEFAOO0Q
CT«{JFOR Te«{STEP {UNTIL ORDER DO EFACT¢EFACT*EFACTIERANGE«0,125/EFACTIEF0000
ACT¢«4/EFACTIEFACTORCCOUNT#PXEFACTSDKTR€OINCFiI¢(MXM+MIDIV 24MeMINCF&NCF1+0000
13CFSWeFALSESFOR Je¢0STEP SUNTIL NCF1 DO BEGIN CFDIIJeCF[IIXDXDICFHII+NCFO0000
JECFLIIXDXHSENDIXeXTSXMeXT+DXHIL1sDSHETRUESF(NsXoYV2GVIBZIF CFSW THEN LeNOOOO
CFi1 ELSE Le¢=13FOR JT¢1STEP SUNTIL M DO BEGIN Ilel=i3Le¢L+{3BETA¢CFDILISFOR0000
KetSTEP {UNTIL N DD YPIKI¢GVIKIXBETASYVIKIJFOR Je1STEP {UNTIL II DO BEGOOOO
IN LeL+13BETACCFDILISFOR Ke1STEP fUNTIL N DO YPIKI«FVIJoKIXBETA+YPLKIZENOOOO
DILeL+ISFCNICFDILI4Xs YPoFVEIo*1)3ENDILEL+1) GAMMACCFDELIZFOR Ke1STEP {UNT0000
IL N DO YPIKI¢GVIKIXGAMMA+YVIKI3FOR T¢1STEP IUNTIL M DO BEGIN L€¢L+13GAMMOOOO
A¢CFDILIIFOR Ke1STEP 1UNTIL N DO YPLKI¢FV{I,KIXGAMMASYPTIKIZEND3L28IF CFS0000
W THEN Le=13FOR I4¢iSTEP fUNTIL M DO BEGIN Il¢I=isLelL+13BETA€CFHILIIFOR K000O
¢{STEP {UNTIL N DO YMIKI«GVIKIXBETA+YVIKIIFOR Je{STEP {UNTIL II DO BEGINOOOO
LeL+1IBETACCFHILIZFOR KeiSTEP fUNTIL N DO YMIKI¢FVIJoKIXBETA+YMIKISEND3 0000
LEL#I3FONSCFHILI#Xo YMsFVEEo*T)SENDSLeL+13GAMMACCFHILIZFOR KeiSTEP 1UNTILO0000
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OWN INTEGER J»S,K3 00026000

OTT

OWN INTEGER ARRAY AT.,BJ[0831} 00027000
LIST LST(FOR Jt==2 STEP { UNTIL 72 DO QrJ1)3 00028000
DEFINE HEREBEFORE =Qi73)#sALLY =FOR J $=1 STEP 1 UNTIL N DO #,YOBYY 00029000
sALLY YOUJIe=sYTIJY#-SETYLIANDY =ALLJ 00030000
BEGIN 00031000

YiLJIs=Y(J]S 00032000

Y{J)lseYO[ J) 00033000
END #3 00034000
LABEL LP9oL1sL 2oL 32L8oLS5sL62L7oMO0>MO1oM02,M03sMI0sMi12Mi2oM132M20 00035000
M21sM22,M23,M30,M31,M32,M333 00036000
SWITCH SW $3MOO,MO1»M02sM0O35Mi0oMi1sM125M13sM202M21,M22,M23,M30,M31 00037000
»M32:M333 00038000
SWITCH RETURN =L 1s0L2,L3sL8sL5,L65L73 00039000

INTEGER LoALF,ALF1,ALF2,BET,BET1,BET2,ALFBEST,BESTO,TALF,TALF1,TALF200040000

»TBETSTBET1,TBET2,BETBEST,»BESTM 3 00041000
ARRAY YO»Y1[OEN)} 00042000
PROCEDURE RECORDORDERS(MsXaXTsY>»YT)S 00043000
VALUE MaXoXTo¥YsYT3 00044000
INTEGER MoXeXToYo VYT 00045000
00046000

BEGIN 00047000
KX t3KY $=] +8xM} 00048000
KX.38KX +2xX3 00049000
KY tsKY +2xY} 00050000
IF XT <YT THEN 00051000
BEGIN 00052000
QIKY+1)t1=QLKY¢+1)=YT} 00053000
QKX 18=QIKX J+XT3 00054000
00055000

ENDS 00056000
IF YT «<XT THEN 00057000
BEGIN 00058000
QLKX+118=QIKX+1]1=XT3 00059000
QCKY 1t=QCKY J+YT3 00060000
00061000

END3 00062000
00063000

ENDS 00064000

PROCEDURE RECORDMETHODS(XoXT»Y»YT33

00065000




00050100
0000100
000€0100
00020100
00010100
00000100
00066000
00086000
00046000
00096000
00056000
000v6000
000€6000
00026000
00076000
00006000
00068000
00088000
00048000
00098000
00048000
00048000
000£€000
00028000
00018000
00008000
00064000
00084000
00024000
00094000
06052000
00092000
00082000
00022000
00012000
00004000
00069000
000689000
00029000
00099000

§GNT
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fLT4XI0+(NID=2[STLY
fMhxZd+ KWxQ+ T=¢ M
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NID3d
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clt

Xt=BJ[0)3
Y t=1F AT[{1I2ATL2ITHEN IF ATD1I2ATI3ITHEN BJUL1)JELSE BJEL3IELSE IF
ATL2)2ATI3ITHEN BJI2IELSE BJL333

END3J
PROCEDURE SELECTMETHODS(X»Y)$
INTEGER X,Y3

BEGIN
J82QL013=2(Q[0Ix4093 +3000001)MDD 16777216
J sed/e4s
FOR S 3=0 STEP 1 UNTIL 3 DD
BEGIN
J t2(J+1)IMOD 43
K $t=33 +2xJ3}
ATIS)1t=QClKI+Q[K+113
BJIS)t=J3

ENDJ

X3=BJ(O]}

Y t=1F ATC1I2ATL2)ITHEN IF ATC1I2ATO3ITHEN BJIL1JELSE BJL3JELSE IF
ATt212ATI3ITHEN BJL21ELSE 8JL313

END3
1f HEREBEFORE #"YES"THEN
BEGIN

LABEL L1}

FILE IN TAPEB31 2(2,90)3

00106000
00107000
00108000
00109000
00110000
00111000
00112000

. 00113000

00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000

FORMAT FM ("SEND THIS HISTORY FILE AND THE PUNCHED CARDS TO L J GA0O0134000

LLAHER VIA ","CAMPUS MAIL®"////X5,A5s110»,110/(8110))}
FORMAT FORM(C/(5E20, 11))3
- INTEGER J»K»sS3
WHILE TRUE .DO READCAB31HST,75,QC*1)rL18L1]s
LISREWIND(AB31HST)}
COMMENT READ COEF.FILE}
FOR J t=0 STEP 1 UNTIL 3 DD FOR K 8=0 STEP 1 UNTIL 3 DO
BEGIN
IF J=2 AND K=0 THEN SPACECTAPES831s1)}
IF J=1 AND K=0 THEN SPACE(TAPEB31,5)}
READ(CTAPEB31-,40-,CO0EFTJoKsn])3

00135000
00136000
00137000
00138000
00139000
00140000
00141000
00142000
00143000
00144000
00145000



¢TT

Dagiy ®
F N

WEITECPUN »FM,i 8T)3
HEREBEFORE 31="YES™)

END s

INTOYR 33308
SELFOTMETHODS(ALF»BET) ?
SELETTORDERSCALF sALF1,81LF2)}
SELECTURDERS(BETABET1,8LT2)5
C t=¥]3

DDX3=(XF=XI1)/8}

A2=(3

YOosyYY$

Ci=A+DNX3

WRITH(PUN »F2T1,ALFsALF1))
TALF1 t=TIME(C2)3

L=z

A0 T SWILAXALF+ALF141735
L1STALFY 3=TIME(C2)=TALF 1S
SETYLANDYS

HRITECPUN sF2T11sALFsALF?)?}
TALF? I=TIME(2)}

I

GO T SWIA4xXALF+ALF2+113
L2ITALF2 33TIME(2)=TALF?;
ACS

Ae=(}

YORYY 2=(YLJY+YILJY)/2}
C1zA4DDXS

ARITECPUN »F2I1,BETSBET1)
TRETY $=TIME(2))

t1=33

GO TO SWIAxBET+BET1+4113
L3STRETY ISTIMEC2)=TRET1S
SETYTANDYS

WRITEC(PUN »F2T11+BETARET?) 3
TBET? 2=TIME(2)3

L3=43

GO TO SWIA4XBET+BET2+1);

00t46200
00147000
00148000
00149000
00150000
00151000
0N152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160000
00161000
00162000
00163000
00164000
00165000
00166000
001679000
00168000
00169000
00170000
00171000
00172000
00173000
00174000
N0175000
00176000
00177000
00178000
00179000
00180000
00181000
00182000
00183000
00184000
00185000



71T

LASTRET2 3=TIME(?2)~TBET23
AC3
Ae=CS
YOBYY $=C(Y({JI+YIDJ])/23
Cs=A+DDXX2)
ALFBEST s$=IF TALF1<TALF2 THEN ALF1 ELSE ALF23
BETBEST s=IF TBET1STBET2 THEN BETY{ ELSE BET23
WRITECPUN »F2I1sALF»ALFBEST)S
TALF 1=TIME(2)3
Li=53
G0 TO SWIA4XALF+ALFBEST+113
L5t TALF $=TIME(2)=TALF }
SETY1ANDYS
WRITE(PUN »F211,BET,BETBEST)}
TBET t=TIME(2)}
L1363}
GO TO SWIL4XBET+BETBEST+113
LO63STBET $=TIME(2)~TBET 3
ACI
At=CS
YOBYY t=(Y[JI+Y1ILJ])/23
Ci=XF3
FOR J t=1 STEP { UNTIL 40 DO QrJ)$=Q[J]x0,980}
RECORDORDERSCALFsALF1s TALF1»ALF2sTALF2)3
RECORDORDERS(BET,BET{,TBET1,BET2,TBET2)S
RECORDMETHODSCALF»TALFsBET»TBET)}
Ql=111=2QC=1]+13
WRITECAB3IHST»75,Q[*])3
WRITECPUN sFMS5110sALFoALF1sTALF1sALFoALF2sTALF22BETsBET1,TRET1»BET>
BET25TBET2sALF» TALFsBETsTBET,Q0=11)}
IF _.TALF STBET THEN
BEGIN
BESTM $=ALF}
BESTO $=ALFBEST
END ELSE. ’
BEGIN
BESTM $1=BET}
BESTO t=BETBEST
END3
L =73
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00190000
00191000
00192000
00193000
00194000
00195000
00196000
00197000
00198000
00199000
00200000
00201000
00202000
00203000
00204000
00205000
00206000
00207000
00208000
00209000
00210000
00211000
00212000
00213000
00214000
00215000
00216000
00217000
00218000
00219000
00220000
00221000
00222000
00223000
00224000
00225000
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00025200
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00055200
000¥5E00
000£6E00
00025200
00015200
00005200
00064200
0008100
00047200
000917200
00067200
000% €00
0O0ENE0U
00024200
0001700
00004200
0006€200
0008€€00
0002€200
0009€¢00
0005€£¢00
000H€200
000EECOU
0002€200
0001€¢00
0000€2€00
00062200
00082200
0002¢200
00092200

*x

{627 01 09

(SO *eE¢2)d300¢0T [+ eTdE143006CeGXUFdvUIOVIFSACIOYeNITIINGD
fAINIWWODLECH

€671 01 09

FCSSL#9CeC 4008 L v JA30045¢S XU dHIVISACDIYONITITINDD
fININWUD S 2EW

{671 01 .09

(S woTe2 14300990 %*1¥¢ J44N0%69G X0 d HISVIYSIIACIIYEN)TTIAMNDD
CINIWNOD SV EH

£627 0L 09

USSR e0eId400 %91 €] i30%CeGoX09dHICTICIOAGIYEN)TTIINOD
CINIAWWODEOCH

_ {627 0L 09

(GG ASS L9 ive 14300 1 ¢ 530DXGHA4YIMeDiyeNINIHILNG
CAINIAWWOOILE I W

{67 01 0Y

(oo pAdSSel*906g J4300¢d¢ 460 %9114 XUHACYI By ININIHILNG
fINIWWODSZTH

. £6271 01 09

O eSS ¥ Qa1 4300vde 5o * o711 44009¢XGHIYIEDoyeNINIHILNG
fAINIWNOOIETIN

£6C7 0L 09

U oASS e wd0E 143009 490V 143009XU*HAYICCIIYINIYIHILNG
SAINIWWUDLOIN

f6¢1 01 09

0 SOl 19¢id300Q G %Y 04300 UZ VIIXUC9040ICAGDSYINISHYAY
fANIWWOILEON

6271 0L 09

£ SSeL*¢0E)4300 o[+ 4290143003V ISXAGIJIICAIICYINISHYAY
fINAWWOIS 20N

{6¢71 0L 0Y

£C SSO[*¢0 e 430D N 91024300 UITIXUINIdOIASDIIYENISHYY
, CINIWWUD LT 0N

{627 0L 0Y

0 SSp#e0¢E) 00 Moy o0 44U0%dEey36xUYEqdIFoAIIVYINISHYQY
‘ EAINIWWNODLOON

{6271 0L 09

NID34

SLT+ 0LSTd+ WLS3IdAxKIMS UL 09

115



o9TT

M303SCOMMENT}
SHANKS(NsA»sCoYoFsloloCOEF[350s%1oPoEASERSDX) S
GO 7O 1293

M31$COMMENTS
SHANKS(NsAsCsrYoFs5,5,CO0EFT351o%)sPsEALERSDX)S
GO TO L293

M323COMMENTS
SHANKSC(Ns>AsCoYsFs6s62COEF[352s*%1sPsEASER»DX)}
GO TO L293 -

M33tCOMMENTS
SHANKS(NsAsCsYsFs7o7>COEF[3535%1sPsEASER»DX)S
L29260 TO RETURNIL)}

L39SWRITE(PUN,FMINTOVR)3

GO TO M303

END3S
L7

ENDJ

00266000
00267000
00268000
00269000
00270000
00271000
00272000
00273000
00274000
00275000
00276000
00277000
00278000
00279000
00280000
00281000
00282000
00283000




IV, RESULTS AND CONCLUSIONS

A. Applications

Three types of problems were used to exercise this integration procedure.
The first type is the Arenstorf orbits of the restricted three body problem.
The second is the system of linear differential equations associated with
Fourier transforms. The third type is the system of linear equations obtained
from a discretization of the partial differential equation for the vibrating
string.

The first of these is characterized by the necessity of frequent step
size change. The other two types are characterized by having a large number

(20 to 100) of coupled equations.

B. Results

The executive routine performed quite satisfactorily. Learning took
place as was desired, the procedure adapting readily to the characteristics
of a particular problem and accuracy.

The results of running with a variety of problems and accuracies are
that no particular method seems to be exceptionally superior to any other.
It did appear that for the accuracy range used (lO-5 to 10-9) certain orders
of some methods were inappropriate. Also for a given method one particular
order usually dominated, but which one dominated depended on the accuracy
being asked and to scome extent on the problem.

All methods performed well and, for different problems, different methods
showed up more successfully. The Runge-Kutta-Shanks method was usually faster

for problems where frequent step size changes were required, but the multi-

step methods usually performed better when long runs of uniform step size
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were appropriate. Of the multistep methods, that of Adams was usually the

fastest.

The performance of the various orders of each method was as follows: 5

For the Adams method, 6th order was best most often for these i
accuracies, with 5th order next fastest.
Of the Butcher formulas, the 5th order was most often the fastest. I
No clear cut case was established for second best, but it was evident that

9th order or higher was clearly too slow at these accuracies to be included

.among the possible orders.

For the Cowell method, 6th order was usually the best. 12th order
and higher were too slow and should not be used at these accuracies.

Of the Shanks formulas, the 4th order was usually the fastest, with

the 5th and 6th orders not too far behind.

C. Conclusions

The results justify the conclusion that the present program would be
suitable and effective as a general library program for integrating systems
of differential equations. It was evident that no particular method or order
is exceptionally superior to all the others. Depending on the accuracy and
the problem, different methods and orders are best. The executive routine

does a satisfactory job of finding a good method and order for each individual

problem.

D. Suggestions for Further Study

Several additional tasks and improvements to the present project can be

envisioned.

The first additional task would be to convert the integration procedure

to double precision (22 decimal places). This would allow an exploration
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of a wider range of accuracies and order. Also at the higher accuracies
more étriking differences in the efficiencies of the various methods and.
- orders are expected to occur. Experiments of the type carried out in
single precision could then be done in double precision and the results
extended over a wider range of accuracies and orders.

As a second additional task, a further investigation should be carried
out into the correlation between order and accuracles. The present programn
does not try to anticipate the optimum order from the accuracy requirements.
There should be a correlation between accuracy and optimum order. This
could be built into the program either on an empirical basls or preferably
as a learning function; that is, as a correlation to be learned by the program
from the running experience.

A third suggestion for further work would be to make improvements in the
learning mechanism. One such possibiiity Jjust mentioned is to incorporate the
learning of the correlation between order and accuracy. Also an investigation
of the optimum rate of "forgetting" could be undertaken. The whole mechanism
of learning should be investigated more thorcughly for the purpose of optimizing
the learning process.

Other revisions in the program or extensions of .this work would be to
improve or refine the step size and error control, to do more experimenting
with a wider variety of problems, and possibly to incorporate other integra-

tion methods into the program.

Respectfu ubmitted,

( %/@ (.

T.°E. Perlin
Project Director
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